Advertisement

Cellular therapies in liver and pancreatic diseases

  • Author Footnotes
    1 Equally contributed to the paper.
    Lucia Giuli
    Footnotes
    1 Equally contributed to the paper.
    Affiliations
    Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
    Search for articles by this author
  • Author Footnotes
    1 Equally contributed to the paper.
    Francesco Santopaolo
    Footnotes
    1 Equally contributed to the paper.
    Affiliations
    Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
    Search for articles by this author
  • Maria Pallozzi
    Affiliations
    Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
    Search for articles by this author
  • Antonio Pellegrino
    Affiliations
    Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
    Search for articles by this author
  • Gaetano Coppola
    Affiliations
    Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
    Search for articles by this author
  • Author Footnotes
    1 Equally contributed to the paper.
    Antonio Gasbarrini
    Correspondence
    Corresponding author at: Internal Medicine and Gastroenterology – Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy, Catholic University of the Sacred Heart, Rome, Italy.
    Footnotes
    1 Equally contributed to the paper.
    Affiliations
    Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy

    Università Cattolica del Sacro Cuore, Rome, Italy
    Search for articles by this author
  • Francesca Romana Ponziani
    Correspondence
    Corresponding author at: Internal Medicine and Gastroenterology – Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy, Catholic University of the Sacred Heart, Rome, Italy.
    Affiliations
    Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy

    Università Cattolica del Sacro Cuore, Rome, Italy
    Search for articles by this author
  • Author Footnotes
    1 Equally contributed to the paper.
Published:December 19, 2022DOI:https://doi.org/10.1016/j.dld.2022.11.013

      Abstract

      Over the past two decades, developments in regenerative medicine in gastroenterology have been greatly enhanced by the application of stem cells, which can self-replicate and differentiate into any somatic cell. The discovery of induced pluripotent stem cells has opened remarkable perspectives on tissue regeneration, including their use as a bridge to transplantation or as supportive therapy in patients with organ failure. The improvements in DNA manipulation and gene editing strategies have also allowed to clarify the physiopathology and to correct the phenotype of several monogenic diseases, both in vivo and in vitro. Further progress has been made with the development of three-dimensional cultures, known as organoids, which have demonstrated morphological and functional complexity comparable to that of a miniature organ. Hence, owing to its protean applications and potential benefits, cell and organoid transplantation has become a hot topic for the management of gastrointestinal diseases. In this review, we describe current knowledge on cell therapies in hepatology and pancreatology, providing insight into their future applications in regenerative medicine.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sepanlou S.G.
        • Safiri S.
        • Bisignano C.
        • et al.
        The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017.
        Lancet Gastroenterol Hepatol. 2020; 5: 245-266
        • Aggarwal A.
        • Ong J.P.
        • Younossi Z.M.
        • et al.
        Predictors of mortality and resource utilization in cirrhotic patients admitted to the medical ICU.
        Chest. 2001; 119: 1489-1497
        • Ge J.
        • Kim W.R.
        • Lai J.C.
        • et al.
        Beyond MELD” – Emerging strategies and technologies for improving mortality prediction, organ allocation and outcomes in liver transplantation.
        J Hepatol. 2022; 76: 1318-1329
        • Dunson J.R.
        • Bakhtiyar S.S.
        • Joshi M.
        • Goss J.A.
        • Rana A
        Intent-to-treat survival in liver transplantation has not improved in 3 decades due to donor shortage relative to waitlist growth.
        Clin Transplant. 2021; 35: e14433
        • Hansel M.C.
        • Gramignoli R.
        • Skvorak K.J.
        • et al.
        The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients.
        Curr Protoc Toxicol. 2014; 62 (14.12.1-14.12.23)
        • Forbes S.J.
        • Gupta S.
        • Dhawan A.
        Cell therapy for liver disease: from liver transplantation to cell factory.
        J Hepatol. 2015; 62: S157-S169
        • Zakrzewski W.
        • Dobrzyński M.
        • Szymonowicz M.
        • et al.
        Stem cells: past, present, and future.
        Stem Cell Res Ther. 2019; 10: 68
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Pineda M.
        • Moghadam F.
        • Ebrahimkhani M.R.
        • et al.
        Engineered CRISPR systems for next generation gene therapies.
        ACS Synth Biol. 2017; 6: 1614-1626
        • Sakabe K.
        • Takebe T.
        • Asai A.
        Organoid medicine in hepatology.
        Clin Liver Dis. 2020; 15: 3-8
        • Alison M.R.
        • Poulsom R.
        • Forbes S.
        • et al.
        An introduction to stem cells.
        J Pathol. 2002; 197: 419-423
        • Kolios G.
        • Moodley Y.
        Introduction to stem cells and regenerative medicine.
        Respiration. 2013; 85: 3-10
        • Rossant J.
        Stem cells from the Mammalian blastocyst.
        Stem Cells. 2001; 19: 477-482
        • Liu G.
        • David B.T.
        • Trawczynski M.
        • Fessler R.G.
        Advances in pluripotent stem cells: history, mechanisms, technologies, and applications.
        Stem Cell Rev Rep. 2020; 16: 3-32
        • Wagers A.J.
        • Weissman I.L
        Plasticity of adult stem cells.
        Cell. 2004; 116: 639-648
        • Guillot P.V.
        • O'Donoghue K.
        • Kurata H.
        • Fisk N.M.
        Fetal stem cells: betwixt and between.
        Semin Reprod Med. 2006; 24: 340-347
        • Viswanathan S.
        • Shi Y.
        • Galipeau J.
        • et al.
        Mesenchymal stem versus stromal cells: international Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature.
        Cytotherapy. 2019; 21: 1019-1024
        • Wang J.
        • Sun M.
        • Liu W.
        • et al.
        Stem cell-based therapies for liver diseases: an overview and update.
        Tissue Eng Regen Med. 2019; 16: 107-118
        • Messina A.
        • Luce E.
        • Hussein M.
        • et al.
        Pluripotent-stem-cell-derived hepatic cells: hepatocytes and organoids for liver therapy and regeneration.
        Cells. 2020; 9: 420
        • Gilgenkrantz H.
        • Collin de l'Hortet A.
        Understanding liver regeneration.
        Am J Pathol. 2018; 188: 1316-1327
        • Iansante V.
        • Chandrashekran A.
        • Dhawan A.
        Cell-based liver therapies: past, present and future.
        Phil Trans R Soc B. 2018; 37320170229
        • Gupta S.
        • Rajvanshi P.
        • Sokhi R.
        • et al.
        Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium.
        Hepatology. 1999; 29: 509-519
        • Iansante V.
        • Mitry R.R.
        • Filippi C.
        • et al.
        Human hepatocyte transplantation for liver disease: current status and future perspectives.
        Pediatr Res. 2018; 83: 232-240
        • Anderson T.N.
        • Zarrinpar A.
        Hepatocyte transplantation: past efforts, current technology, and future expansion of therapeutic potential.
        J Surg Res. 2018; 226: 48-55
        • Dhawan A.
        • Puppi J.
        • Hughes R.D.
        • et al.
        Human hepatocyte transplantation: current experience and future challenges.
        Nat Rev Gastroenterol Hepatol. 2010; 7: 288-298
        • Mei J.
        • Sgroi A.
        • Mai G.
        • et al.
        Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice.
        Cell Transplant. 2009; 18: 101-110
        • Sgroi A.
        • Mai G.
        • Morel P.
        • et al.
        Transplantation of encapsulated hepatocytes during acute liver failure improves survival without stimulating native liver regeneration.
        Cell Transplant. 2011; 20: 1791-1803
        • Stéphenne X.
        • Najimi M.
        • Ngoc D.K.
        • et al.
        Cryopreservation of human hepatocytes alters the mitochondrial respiratory chain complex 1.
        Cell Transplant. 2007; 16: 409-419
        • Trounson A.
        • McDonald C.
        Stem cell therapies in clinical trials: progress and challenges.
        Cell Stem Cell. 2015; 17: 11-22
        • Ogawa M.
        • Ogawa S.
        • Bear C.E.
        • et al.
        Directed differentiation of cholangiocytes from human pluripotent stem cells.
        Nat Biotechnol. 2015; 33: 853-861
        • Cernigliaro V.
        • Peluso R.
        • Zedda B.
        • et al.
        Evolving cell-based and cell-free clinical strategies for treating severe human liver diseases.
        Cells. 2020; 9: 386
        • Sampaziotis F.
        • Cardoso de Brito M.
        • Madrigal P.
        • et al.
        Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation.
        Nat Biotechnol. 2015; 33: 845-852
        • Ware C.B.
        • Nelson A.M.
        • Mecham B.
        • et al.
        Derivation of naïve human embryonic stem cells.
        Proc Natl Acad Sci USA. 2014; 111: 4484-4489
        • Kobolak J.
        • Dinnyes A.
        • Memic A.
        • et al.
        Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche.
        Methods. 2016; 99: 62-68
        • Jiang Y.
        • Jahagirdar B.N.
        • Reinhardt R.L.
        • et al.
        Pluripotency of mesenchymal stem cells derived from adult marrow.
        Nature. 2002; 418: 41-49
        • Zuk P.A.
        • Zhu M.
        • Mizuno H.
        • et al.
        Multilineage cells from human adipose tissue: implications for cell-based therapies.
        Tissue Eng. 2001; 7: 211-228
        • De Bari C.
        • Dell'Accio F.
        • Tylzanowski P.
        • et al.
        Multipotent mesenchymal stem cells from adult human synovial membrane.
        Arthrit Rheumat. 2001; 44: 1928-1942
        • Lee O.K.
        • Kuo T.K.
        • Chen W.-.M.
        • et al.
        Isolation of multipotent mesenchymal stem cells from umbilical cord blood.
        Blood. 2004; 103: 1669-1675
        • Fukuchi Y.
        • Nakajima H.
        • Sugiyama D.
        • et al.
        Human placenta-derived cells have mesenchymal stem/progenitor cell potential.
        Stem Cells. 2004; 22: 649-658
        • Li S.
        • Bi Y.
        • Duan Z.
        • et al.
        Stem cell transplantation for treating liver diseases: progress and remaining challenges.
        Am J Transl Res. 2021; 13: 3954-3966
        • Banas A.
        • Teratani T.
        • Yamamoto Y.
        • et al.
        Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes.
        Hepatology. 2007; 46: 219-228
        • Najimi M.
        • Khuu D.N.
        • Lysy P.A.
        • et al.
        Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes?.
        Cell Transplant. 2007; 16: 717-728
        • El Baz H.
        • Demerdash Z.
        • Kamel M.
        • et al.
        Transplant of hepatocytes, undifferentiated mesenchymal stem cells, and in vitro hepatocyte-differentiated mesenchymal stem cells in a chronic liver failure experimental model: a comparative study.
        Exp Clin Transplant. 2018; 16: 81-89
        • Alfaifi M.
        • Eom Y.W.
        • Newsome P.N.
        • et al.
        Mesenchymal stromal cell therapy for liver diseases.
        J Hepatol. 2018; 68: 1272-1285
        • Sharma R.R.
        • Pollock K.
        • Hubel A.
        • et al.
        Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices: MSC Clinical Applications and Manufacturing.
        Transfusion (Paris). 2014; 54: 1418-1437
        • Hofmann J.
        • Hackl V.
        • Esser H.
        • et al.
        Cell-based regeneration and treatment of liver diseases.
        IJMS. 2021; 22: 10276
        • Di Nicola M.
        • Carlo-Stella C.
        • Magni M.
        • et al.
        Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.
        Blood. 2002; 99: 3838-3843
        • Wang J.
        • Bian C.
        • Liao L.
        • et al.
        Inhibition of hepatic stellate cells proliferation by mesenchymal stem cells and the possible mechanisms.
        Hepatol Res. 2009; 39: 1219-1228
        • Kang S.H.
        • Kim M.Y.
        • Eom Y.W.
        • et al.
        Mesenchymal stem cells for the treatment of liver disease: present and perspectives.
        Gut Liver. 2020; 14: 306-315
        • Eggenhofer E.
        • Luk F.
        • Dahlke M.H.
        • et al.
        The life and fate of mesenchymal stem cells.
        Front Immunol. 2014; 5: 148
        • Hordyjewska A.
        • Popiołek Ł.
        • Horecka A.
        Characteristics of hematopoietic stem cells of umbilical cord blood.
        Cytotechnology. 2015; 67: 387-396
        • Wang M.
        • Zhang X.
        • Xiong X.I.
        • et al.
        Bone marrow mesenchymal stem cells reverse liver damage in a carbon tetrachloride-induced mouse model of chronic liver injury.
        In Vivo. 2016; 30: 187-193
        • Yannaki E.
        • Athanasiou E.
        • Xagorari A.
        • et al.
        G-CSF–primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs.
        Exp Hematol. 2005; 33: 108-119
        • Lee J.Y.
        • Hong S.-.H.
        Hematopoietic stem cells and their roles in tissue regeneration.
        IJSC. 2020; 13: 1-12
        • Ogawa M.
        • LaRue A.C.
        • Mehrotra M.
        Hematopoietic stem cells are pluripotent and not just “hematopoietic.”.
        Blood Cells Mol Dis. 2013; 51: 3-8
        • Lagasse E.
        • Connors H.
        • Al-Dhalimy M.
        • et al.
        Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.
        Nat Med. 2000; 6: 1229-1234
        • Wang X.
        • Willenbring H.
        • Akkari Y.
        • et al.
        Cell fusion is the principal source of bone-marrow-derived hepatocytes.
        Nature. 2003; 422: 897-901
        • Vassilopoulos G.
        • Wang P.-.R.
        • Russell D.W.
        Transplanted bone marrow regenerates liver by cell fusion.
        Nature. 2003; 422: 901-904
        • Tanaka M.
        • Itoh T.
        • Tanimizu N.
        • Miyajima A
        Liver stem/progenitor cells: their characteristics and regulatory mechanisms.
        J Biochem. 2011; 149: 231-239
        • Larrivée B.
        • Karsan A
        Involvement of marrow-derived endothelial cells in vascularization.
        Handb Exp Pharmacol. 2007; 180: 89-114
        • Ko S.
        • Russell J.O.
        • Molina L.M.
        • et al.
        Liver progenitors and adult cell plasticity in hepatic injury and repair: knowns and unknowns.
        Annu Rev Pathol. 2020; 15: 23-50
        • Itoh T.
        • Miyajima A.
        Liver regeneration by stem/progenitor cells: Itoh and Miyajima.
        Hepatology. 2014; 59: 1617-1626
        • Zhang L.
        • Theise N.
        • Chua M.
        • et al.
        The stem cell niche of human livers: symmetry between development and regeneration.
        Hepatology. 2008; 48: 1598-1607
        • Cardinale V.
        • Wang Y.
        • Carpino G.
        • et al.
        Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets.
        Hepatology. 2011; 54: 2159-2172
        • Yovchev M.I.
        • Lee E.J.
        • Rodriguez-Silva W.
        • et al.
        Biliary obstruction promotes multilineage differentiation of hepatic stem cells.
        Hepatol Commun. 2019; 3: 1137-1150
        • Carraro A.
        • Flaibani M.
        • Cillo U.
        • et al.
        A combining method to enhance the in vitro differentiation of hepatic precursor cells.
        Tissue Eng Part C. 2010; 16: 1543-1551
        • Dianat N.
        • Dubois-Pot-Schneider H.
        • Steichen C.
        • et al.
        Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells.
        Hepatology. 2014; 60: 700-714
        • Zhang J.
        • Zhao X.
        • Liang L.
        • et al.
        A decade of progress in liver regenerative medicine.
        Biomaterials. 2018; 157: 161-176
        • Si-Tayeb K.
        • Noto F.K.
        • Nagaoka M.
        • et al.
        Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells.
        Hepatology. 2010; 51: 297-305
        • Song Z.
        • Cai J.
        • Liu Y.
        • et al.
        Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells.
        Cell Res. 2009; 19: 1233-1242
        • Zhang L.
        • Ma X.-.J.-.N.
        • Fei Y.-.Y.
        • et al.
        Stem cell therapy in liver regeneration: focus on mesenchymal stem cells and induced pluripotent stem cells.
        Pharmacol Ther. 2022; 232108004
        • Yu Y.
        • Liu H.
        • Ikeda Y.
        • et al.
        Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies.
        Stem Cell Res. 2012; 9: 196-207
        • De Assuncao T.M.
        • Sun Y.
        • Jalan-Sakrikar N.
        • et al.
        Erratum: development and characterization of human-induced pluripotent stem cell-derived cholangiocytes.
        Lab Invest. 2015; 95 (–1218): 1218
        • Bizzaro
        • Russo
        • Burra
        New perspectives in liver transplantation: from regeneration to bioengineering.
        Bioengineering. 2019; 6: 81
        • Lee C.A.
        • Sinha S.
        • Fitzpatrick E.
        • et al.
        Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.
        J Mol Med. 2018; 96: 469-481
        • Fox I.J.
        • Chowdhury J.R.
        • Kaufman S.S.
        • et al.
        Treatment of the Crigler–Najjar syndrome type I with hepatocyte transplantation.
        N Engl J Med. 1998; 338: 1422-1427
        • Khan A.A.
        • Parveen N.
        • Mahaboob V.S.
        • et al.
        Treatment of Crigler-Najjar syndrome type 1 by hepatic progenitor cell transplantation: a simple procedure for management of hyperbilirubinemia.
        Transplant Proc. 2008; 40: 1148-1150
        • Meyburg J.
        • Hoerster F.
        • Schmidt J.
        • et al.
        Monitoring of intraportal liver cell application in children.
        Cell Transplant. 2010; 19: 629-638
        • Lysy P.-.A.
        • Najimi M.
        • Stephenne X.
        • et al.
        Liver cell transplantation for Crigler-Najjar syndrome type I: update and perspectives.
        World J Gastroenterol. 2008; 14: 3464-3470
        • Allen K.J.
        • Mifsud N.A.
        • Williamson R.
        • et al.
        Cell-mediated rejection results in allograft loss after liver cell transplantation.
        Liver Transpl. 2008; 14: 688-694
        • Dhawan A.
        • Mitry R.R.
        • Hughes R.D.
        Hepatocyte transplantation for liver-based metabolic disorders.
        J Inherit Metab Dis. 2006; 29: 431-435
        • Ambrosino G.
        • Varotto S.
        • Strom S.C.
        • et al.
        Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1.
        Cell Transplant. 2005; 14: 151-157
        • Darwish A.A.
        • Sokal E.
        • Stephenne X.
        • et al.
        Permanent access to the portal system for cellular transplantation using an implantable port device.
        Liver Transpl. 2004; 10: 1213-1215
        • Muraca M.
        • Gerunda G.
        • Neri D.
        • et al.
        Hepatocyte transplantation as a treatment for glycogen storage disease type 1a.
        Lancet North Am Ed. 2002; 359: 317-318
        • Stéphenne X.
        • Najimi M.
        • Sibille C.
        • et al.
        Sustained Engraftment and Tissue Enzyme Activity After Liver Cell Transplantation for Argininosuccinate Lyase Deficiency.
        Gastroenterology. 2006; 130: 1317-1323
        • Meyburg J.
        • Das A.M.
        • Hoerster F.
        • et al.
        One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects.
        Transplantation. 2009; 87: 636-641
        • Stéphenne X.
        • Debray F.G.
        • Smets F.
        • et al.
        Hepatocyte transplantation using the domino concept in a child with tetrabiopterin nonresponsive phenylketonuria.
        Cell Transplant. 2012; 21: 2765-2770
        • Segeritz C.-.P.
        • Rashid S.T.
        • de Brito M.C.
        • et al.
        hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α1-antitrypsin deficiency.
        J Hepatol. 2018; 69: 851-860
        • Dhawan A.
        • Mitry R.R.
        • Hughes R.D.
        • et al.
        Hepatocyte transplantation for inherited factor VII deficiency.
        Transplantation. 2004; 78: 1812-1814
        • Sokal E.M.
        • Smets F.
        • Bourgois A.
        • et al.
        Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up1.
        Transplantation. 2003; 76: 735-738
        • Chen Y.
        • Li R.
        • Zhang L.
        • et al.
        Treatment of α-1 antitrypsin deficiency using hepatic-specified cells derived from human-induced pluripotent stem cells.
        Am J Transl Res. 2021; 13: 2710-2716
        • Wei R.
        • Yang J.
        • Cheng C.-.W.
        • et al.
        CRISPR-targeted genome editing of human induced pluripotent stem cell-derived hepatocytes for the treatment of Wilson's disease.
        JHEP Reports. 2022; 4100389
        • Khan A.A.
        • Parveen N.
        • Mahaboob V.S.
        • et al.
        Management of hyperbilirubinemia in biliary atresia by hepatic progenitor cell transplantation through hepatic artery: a case report.
        Transplant Proc. 2008; 40: 1153-1155
        • Son J.S.
        • Park C.-.Y.
        • Lee G.
        • et al.
        Therapeutic correction of hemophilia A using 2D endothelial cells and multicellular 3D organoids derived from CRISPR/Cas9-engineered patient iPSCs.
        Biomaterials. 2022; 283121429
        • Tian L.
        • Ye Z.
        • Kafka K.
        • et al.
        Biliary atresia relevant human induced pluripotent stem cells recapitulate key disease features in a dish.
        J Pediatr Gastroenterol Nutr. 2019; 68: 56-63
        • Omer L.
        • Hudson E.A.
        • Zheng S.
        • et al.
        CRISPR Correction of a homozygous low-density lipoprotein receptor mutation in familial hypercholesterolemia induced pluripotent stem cells.
        Hepatol Commun. 2017; 1: 886-898
        • Okada H.
        • Nakanishi C.
        • Yoshida S.
        • et al.
        Function and immunogenicity of gene-corrected iPSC-derived hepatocyte-like cells in restoring low density lipoprotein uptake in homozygous familial hypercholesterolemia.
        Sci Rep. 2019; 9: 4695
        • Strom S.C.
        • Fisher R.A.
        • Thompson M.T.
        • et al.
        Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure.
        Transplantation. 1997; 63: 559-569
        • Dhawan A.
        • Chaijitraruch N.
        • Fitzpatrick E.
        • et al.
        Alginate microencapsulated human hepatocytes for the treatment of acute liver failure in children.
        J Hepatol. 2020; 72: 877-884
        • Lin B.
        • Chen J.
        • Qiu W.
        • et al.
        Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial: Lin, Chen, et al.
        Hepatology. 2017; 66: 209-219
        • Shi M.
        • Zhang Z.
        • Xu R.
        • et al.
        Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients.
        Stem Cells Transl Med. 2012; 1: 725-731
        • Schacher F.C.
        • Martins Pezzi da Silva A.
        • Silla L.M.
        • da R.
        • et al.
        Bone marrow mesenchymal stem cells in acute-on-chronic liver failure Grades 2 and 3: a phase I-II Randomized Clinical Trial. Schiavon L de L, editor.
        Canad J Gastroenterol Hepatol. 2021; 2021: 1-9
        • Xue R.
        • Meng Q.
        • Dong J.
        • et al.
        Clinical performance of stem cell therapy in patients with acute-on-chronic liver failure: a systematic review and meta-analysis.
        J Transl Med. 2018; 16: 126
        • Suk K.T.
        • Yoon J.-.H.
        • Kim M.Y.
        • et al.
        Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial.
        Hepatology. 2016; 64: 2185-2197
        • Shi M.
        • Li Y.-.Y.
        • Xu R.-.N.
        • et al.
        Mesenchymal stem cell therapy in decompensated liver cirrhosis: a long-term follow-up analysis of the randomized controlled clinical trial.
        Hepatol Int. 2021; 15: 1431-1441
        • Salama H.
        Autologous CD34 + and CD133 + stem cells transplantation in patients with end stage liver disease.
        WJG. 2010; 16: 5297
        • Newsome P.N.
        • Fox R.
        • King A.L.
        • et al.
        Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial.
        Lancet Gastroenterol Hepatol. 2018; 3: 25-36
        • Zhou G.-.P.
        • Jiang Y.-.Z.
        • Sun L-Y
        • et al.
        Therapeutic effect and safety of stem cell therapy for chronic liver disease: a systematic review and meta-analysis of randomized controlled trials.
        Stem Cell Res Ther. 2020; 11: 419
        • Hallett J.M.
        • Ferreira-Gonzalez S.
        • Man T.Y.
        • et al.
        Human biliary epithelial cells from discarded donor livers rescue bile duct structure and function in a mouse model of biliary disease.
        Cell Stem Cell. 2022; 29 (e10): 355-371
        • Ridola L.
        • Bragazzi M.C.
        • Cardinale V.
        • et al.
        Cholangiocytes: cell transplantation.
        Biochim Biophys Acta. 2018; 1864: 1516-1523
        • Schilsky M.L.
        Liver transplantation for Wilson's disease: liver transplantation for Wilson's disease.
        Ann NY Acad Sci. 2014; 1315: 45-49
        • Rashid S.T.
        • Corbineau S.
        • Hannan N.
        • et al.
        Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells.
        J Clin Invest. 2010; 120: 3127-3136
        • Carlson J.A.
        • Rogers B.B.
        • Sifers R.N.
        • et al.
        Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice.
        J Clin Invest. 1989; 83: 1183-1190
        • Liu X.-.Q.
        Correlation of ATP7B genotype with phenotype in Chinese patients with Wilson disease.
        WJG. 2004; 10: 590
        • Grossman M.
        • Rader D.J.
        • Muller D.W.M.
        • et al.
        A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia.
        Nat Med. 1995; 1: 1148-1154
        • Gupta R.M.
        • Musunuru K.
        Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9.
        J Clin Invest. 2014; 124: 4154-4161
        • Lankisch P.G.
        Natural course of chronic pancreatitis.
        Pancreatology. 2001; 1: 3-14
        • Andrén-Sandberg Å.
        • Hoem D.
        • Gislason H.
        Pain management in chronic pancreatitis.
        Eur J Gastroenterol Hepatol. 2002; 14: 957-970
        • Ahmed S.M.
        • Morsi M.
        • Ghoneim N.I.
        • et al.
        Mesenchymal stromal cell therapy for pancreatitis: a systematic review.
        Oxid Med Cell Longev. 2018; 2018: 1-14
        • Kawakubo K.
        • Ohnishi S.
        • Kuwatani M.
        • et al.
        Mesenchymal stem cell therapy for acute and chronic pancreatitis.
        J Gastroenterol. 2018; 53: 1-5
        • Ma Z.
        • Zhou J.
        • Yang T.
        • et al.
        Mesenchymal stromal cell therapy for pancreatitis: progress and challenges.
        Med Res Rev. 2021; 41: 2474-2488
        • DiMeglio L.A.
        • Evans-Molina C.
        • Oram R.A.
        Type 1 diabetes.
        Lancet North Am Ed. 2018; 391: 2449-2462
        • Van Belle T.
        • von Herrath M
        Immunosuppression in islet transplantation.
        J Clin Invest. 2008; : JCI35639
        • Skyler J.S.
        Hope vs hype: where are we in type 1 diabetes?.
        Diabetologia. 2018; 61: 509-516
        • Rezania A.
        • Bruin J.E.
        • Riedel M.J.
        • et al.
        Maturation of human embryonic stem cell–derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice.
        Diabetes. 2012; 61: 2016-2029
        • Rezania A.
        • Bruin J.E.
        • Arora P.
        • et al.
        Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.
        Nat Biotechnol. 2014; 32: 1121-1133
        • Nair G.G.
        • Liu J.S.
        • Russ H.A.
        • et al.
        Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells.
        Nat Cell Biol. 2019; 21: 263-274
        • Velazco-Cruz L.
        • Song J.
        • Maxwell K.G.
        • et al.
        Acquisition of dynamic function in human stem cell-derived β cells.
        Stem Cell Rep. 2019; 12: 351-365
        • Hogrebe N.J.
        • Augsornworawat P.
        • Maxwell K.G.
        • et al.
        Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells.
        Nat Biotechnol. 2020; 38: 460-470
        • Jeon K.
        • Lim H.
        • Kim J.-.H.
        • et al.
        Differentiation and Transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model.
        Stem Cells Dev. 2012; 21: 2642-2655
        • Sui L.
        • Danzl N.
        • Campbell S.R.
        • et al.
        β-Cell Replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells.
        Diabetes. 2018; 67: 26-35
        • Hua X.
        • Wang Y.
        • Tang Y.
        • et al.
        Pancreatic insulin-producing cells differentiated from human embryonic stem cells correct hyperglycemia in SCID/NOD mice, an animal model of diabetes. Fiorina P, editor.
        PLoS One. 2014; 9e102198
        • Amer M.G.
        • Embaby A.S.
        • Karam R.A.
        • et al.
        Role of adipose tissue derived stem cells differentiated into insulin producing cells in the treatment of type I diabetes mellitus.
        Gene. 2018; 654: 87-94
        • Arany E.J.
        • Waseem M.
        • Strutt B.J.
        • et al.
        Direct comparison of the abilities of bone marrow mesenchymal versus hematopoietic stem cells to reverse hyperglycemia in diabetic NOD.SCID mice.
        Islets. 2018; 10: 137-150
        • Zhou Z.
        • Zhu X.
        • Huang H.
        • et al.
        Recent progress of research regarding the applications of stem cells for treating diabetes mellitus.
        Stem Cells Dev. 2022; 31: 102-110
        • Navaei-Nigjeh M.
        • Moloudizargari M.
        • Baeeri M.
        • et al.
        Reduction of marginal mass required for successful islet transplantation in a diabetic rat model using adipose tissue–derived mesenchymal stromal cells.
        Cytotherapy. 2018; 20: 1124-1142
        • Gabr M.M.
        • Zakaria M.M.
        • Refaie A.F.
        • et al.
        Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice.
        Cell Transplant. 2013; 22: 133-145
        • Xin Y.
        • Jiang X.
        • Wang Y.
        • et al.
        Insulin-producing cells differentiated from human bone marrow mesenchymal stem cells in vitro ameliorate streptozotocin-induced diabetic hyperglycemia.
        PLoS One. 2016; 11 (Fiorina P, editor)e0145838
        • Zang L.
        • Hao H.
        • Liu J.
        • et al.
        Mesenchymal stem cell therapy in type 2 diabetes mellitus.
        Diabetol Metab Syndr. 2017; 9: 36
        • Estrada E.J.
        • Valacchi F.
        • Nicora E.
        • et al.
        Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus.
        Cell Transplant. 2008; 17: 1295-1304
        • Bhansali A.
        • Upreti V.
        • Khandelwal N.
        • et al.
        Efficacy of autologous bone marrow–derived stem cell transplantation in patients with type 2 diabetes mellitus.
        Stem Cells Dev. 2009; 18: 1407-1416
        • Bhansali A.
        • Asokumar P.
        • Walia R.
        • et al.
        Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study.
        Cell Transplant. 2014; 23: 1075-1085
        • Skyler J.S.
        • Fonseca V.A.
        • Segal K.R.
        • et al.
        Allogeneic mesenchymal precursor cells in type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study.
        Diabetes Care. 2015; 38: 1742-1749
        • Hu J.
        • Li C.
        • Wang L.
        • et al.
        Long term effects of the implantation of autologous bone marrow mononuclear cells for type 2 diabetes mellitus.
        Endocr J. 2012; 59: 1031-1039
        • Kong D.
        • Zhuang X.
        • Wang D.
        • et al.
        Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus.
        Clin Lab. 2014; 60: 1969-1976
        • Liu X.
        • Zheng P.
        • Wang X.
        • et al.
        A preliminary evaluation of efficacy and safety of Wharton's jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus.
        Stem Cell Res Ther. 2014; 5: 57
        • Le Blanc K.
        • Tammik C.
        • Rosendahl K.
        • et al.
        HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells.
        Exp Hematol. 2003; 31: 890-896
        • Chopra N.
        • Choudhury S.
        • Bhargava S.
        • et al.
        Potentials of “stem cell-therapy” in pancreatic cancer: an update.
        Pancreatology. 2019; 19: 1034-1042
        • Kidd S.
        • Caldwell L.
        • Dietrich M.
        • et al.
        Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment.
        Cytotherapy. 2010; 12: 615-625
        • Cousin B.
        • Ravet E.
        • Poglio S.
        • et al.
        Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. Ng IO-L, editor.
        PLoS One. 2009; 4: e6278
        • Zischek C.
        • Niess H.
        • Ischenko I.
        • et al.
        Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma.
        Ann Surg. 2009; 250: 747-753
        • Brini A.T.
        • Coccè V.
        • Ferreira L.M.J.
        • et al.
        Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel.
        Expert Opin Drug Deliv. 2016; 13: 789-798
        • Kanda Y.
        • Komatsu Y.
        • Akahane M.
        • et al.
        Graft-versus-tumor effect against advanced pancreatic cancer after allogeneic reduced-intensity stem cell transplantation.
        Transplantation. 2005; 79: 821-827
        • Takahashi T.
        • Omuro Y.
        • Matsumoto G.
        • et al.
        Nonmyeloablative allogeneic stem cell transplantation for patients with unresectable pancreatic cancer.
        Pancreas. 2004; 28: e65-e69
        • Abe Y.
        • Ito T.
        • Baba E.
        • et al.
        Nonmyeloablative allogeneic hematopoietic stem cell transplantation as immunotherapy for pancreatic cancer.
        Pancreas. 2009; 38: 815-819
        • Omazic B.
        • Ayoglu B.
        • Löhr M.
        • et al.
        A preliminary report: radical surgery and stem cell transplantation for the treatment of patients with pancreatic cancer.
        J Immunother. 2017; 40: 132-139
        • Huang L.
        • Holtzinger A.
        • Jagan I.
        • et al.
        Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell– and patient-derived tumor organoids.
        Nat Med. 2015; 21: 1364-1371
        • Marsee A.
        • Roos F.J.M.
        • Verstegen M.M.A.
        • et al.
        Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids.
        Cell Stem Cell. 2021; 28: 816-832
        • Michalopoulos G.K.
        • Bowen W.C.
        • Mulè K.
        • et al.
        Histological organization in hepatocyte organoid cultures.
        Am J Pathol. 2001; 159: 1877-1887
        • Huch M.
        • Dorrell C.
        • Boj S.F.
        • et al.
        In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration.
        Nature. 2013; 494: 247-250
        • Takebe T.
        • Sekine K.
        • Enomura M.
        • et al.
        Vascularized and functional human liver from an iPSC-derived organ bud transplant.
        Nature. 2013; 499: 481-484
        • Huch M.
        • Gehart H.
        • van Boxtel R.
        • et al.
        Long-term culture of genome-stable bipotent stem cells from adult human liver.
        Cell. 2015; 160: 299-312
        • Hu H.
        • Gehart H.
        • Artegiani B.
        • et al.
        Long-term expansion of functional mouse and human hepatocytes as 3D organoids.
        Cell. 2018; 175 (e19): 1591-1606
        • Takebe T.
        • Sekine K.
        • Kimura M.
        • et al.
        Massive and reproducible production of liver buds entirely from human pluripotent stem cells.
        Cell Rep. 2017; 21: 2661-2670
        • Sampaziotis F.
        • Justin A.W.
        • Tysoe O.C.
        • et al.
        Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids.
        Nat Med. 2017; 23: 954-963
        • Sampaziotis F.
        • Muraro D.
        • Tysoe O.C.
        • et al.
        Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.
        Science. 2021; 371: 839-846
        • Andersson E.R.
        • Chivukula I.V.
        • Hankeova S.
        • et al.
        Mouse model of alagille syndrome and mechanisms of Jagged1 missense mutations.
        Gastroenterology. 2018; 154: 1080-1095
        • Gómez-Mariano G.
        • Matamala N.
        • Martínez S.
        • et al.
        Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease.
        Hepatol Int. 2020; 14: 127-137
        • Ouchi R.
        • Togo S.
        • Kimura M.
        • et al.
        Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids.
        Cell Metab. 2019; 30 (e6): 374-384
        • Hohwieler M.
        • Illing A.
        • Hermann P.C.
        • et al.
        Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling.
        Gut. 2017; 66: 473-486
        • Kruitwagen H.S.
        • Oosterhoff L.A.
        • van Wolferen M.E.
        • et al.
        Long-term survival of transplanted autologous canine liver organoids in a COMMD1-deficient dog model of metabolic liver disease.
        Cells. 2020; 9: 410
        • Elbadawy M.
        • Yamanaka M.
        • Goto Y.
        • et al.
        Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model.
        Biomaterials. 2020; 237119823
        • Ramli M.N.B.
        • Lim Y.S.
        • Koe C.T.
        • et al.
        Human pluripotent stem cell-derived organoids as models of liver disease.
        Gastroenterology. 2020; 159 (e12): 1471-1486
        • Broutier L.
        • Mastrogiovanni G.
        • Verstegen M.M.
        • et al.
        Human primary liver cancer–derived organoid cultures for disease modeling and drug screening.
        Nat Med. 2017; 23: 1424-1435
        • Takai A.
        • Fako V.
        • Dang H.
        • et al.
        Three-dimensional organotypic culture models of human hepatocellular carcinoma.
        Sci Rep. 2016; 6: 21174
        • Wang Y.
        • Takeishi K.
        • Li Z.
        • et al.
        Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancy-related hallmarks.
        Organogenesis. 2017; 13: 83-94
        • Nie Y.-.Z.
        • Zheng Y.-.W.
        • Miyakawa K.
        • et al.
        Recapitulation of hepatitis B virus–host interactions in liver organoids from human induced pluripotent stem cells.
        EBioMedicine. 2018; 35: 114-123
        • Baktash Y.
        • Madhav A.
        • Coller K.E.
        • et al.
        Single Particle imaging of polarized hepatoma organoids upon Hepatitis C virus infection reveals an ordered and sequential entry process.
        Cell Host Microbe. 2018; 23 (e5): 382-394
        • Soroka C.J.
        • Assis D.N.
        • Alrabadi L.S.
        • et al.
        Bile-derived organoids from patients with primary sclerosing cholangitis recapitulate their inflammatory immune profile.
        Hepatology. 2019; 70: 871-882
        • Nie Y.-.Z.
        • Zheng Y.-.W.
        • Ogawa M.
        • et al.
        Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure.
        Stem Cell Res Ther. 2018; 9: 5
        • Vorrink S.U.
        • Zhou Y.
        • Ingelman-Sundberg M.
        • et al.
        Prediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditions.
        Toxicol Sci. 2018; 163: 655-665
        • Shinozawa T.
        • Kimura M.
        • Cai Y.
        • et al.
        High-fidelity drug-induced liver injury screen using human pluripotent stem cell–derived organoids.
        Gastroenterology. 2021; 160 (e10): 831-846
        • Lim J.T.C.
        • Kwang L.G.
        • Ho N.C.W.
        • et al.
        Hepatocellular carcinoma organoid co-cultures mimic angiocrine crosstalk to generate inflammatory tumor microenvironment.
        Biomaterials. 2022; 284121527
        • Agbunag C.
        • Lee K.E.
        • Buontempo S.
        • Bar-Sagi D.
        Pancreatic duct epithelial cell isolation and cultivation in two-dimensional and three-dimensional culture systems.
        Methods Enzymol. 2006; 407: 703-710
        • Li X.
        • Nadauld L.
        • Ootani A.
        • et al.
        Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture.
        Nat Med. 2014; 20: 769-777
        • Li L.
        • Knutsdottir H.
        • Hui K.
        • et al.
        Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity.
        JCI Insight. 2019; 4e121490
        • Boj S.F.
        • Hwang C.-.I.
        • Baker L.A.
        • et al.
        Organoid models of human and mouse ductal pancreatic cancer.
        Cell. 2015; 160: 324-338
        • Peng W.C.
        • Logan C.Y.
        • Fish M.
        • et al.
        Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture.
        Cell. 2018; 175 (e15): 1607-1619
        • Wu F.
        • Wu D.
        • Ren Y.
        • et al.
        Generation of hepatobiliary organoids from human induced pluripotent stem cells.
        J Hepatol. 2019; 70: 1145-1158
        • Thompson W.L.
        • Takebe T.
        Generation of multi-cellular human liver organoids from pluripotent stem cells.
        Methods Cell Biol. 2020; 159: 47-68
        • Schaub J.R.
        • Huppert K.A.
        • Kurial S.N.T.
        • et al.
        De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation.
        Nature. 2018; 557: 247-251
        • Turnpenny P.D.
        • Ellard S.
        Alagille syndrome: pathogenesis, diagnosis and management.
        Eur J Hum Genet. 2012; 20: 251-257
        • Dekkers J.F.
        • Wiegerinck C.L.
        • de Jonge H.R.
        • et al.
        A functional CFTR assay using primary cystic fibrosis intestinal organoids.
        Nat Med. 2013; 19: 939-945
        • Babu R.O.
        • Lui V.C.H.
        • Chen Y.
        • et al.
        Beta-amyloid deposition around hepatic bile ducts is a novel pathobiological and diagnostic feature of biliary atresia.
        J Hepatol. 2020; 73: 1391-1403
        • Wang S.
        • Wang X.
        • Tan Z.
        • et al.
        Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury.
        Cell Res. 2019; 29: 1009-1026
        • Osna N.A.
        • Donohue T.M.
        • Kharbanda K.K.
        Alcoholic liver disease: pathogenesis and current management.
        Alcohol Res. 2017; 38: 147-161
        • Lazaridis K.N.
        • LaRusso N.F.
        Primary sclerosing cholangitis.
        N Engl J Med. 2016; 375 (Ingelfinger JR, editor): 1161-1170
        • Loarca L.
        • De Assuncao T.M.
        • Jalan-Sakrikar N.
        • et al.
        Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis.
        Lab Invest. 2017; 97: 1385-1396
        • Fang Y.
        • Eglen R.M.
        Three-dimensional cell cultures in drug discovery and development.
        SLAS Discovery. 2017; 22: 456-472
        • Huch M.
        • Bonfanti P.
        • Boj S.F.
        • et al.
        Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis.
        EMBO J. 2013; 32: 2708-2721
        • Nuciforo S.
        • Fofana I.
        • Matter M.S.
        • et al.
        Organoid Models of human liver cancers derived from tumor needle biopsies.
        Cell Rep. 2018; 24: 1363-1376
        • Deng
        • Wei
        • Chen
        • et al.
        Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review.
        Micromachines. 2019; 10: 676
        • Li L.
        • Gokduman K.
        • Gokaltun A.
        • et al.
        A microfluidic 3D hepatocyte chip for hepatotoxicity testing of nanoparticles.
        Nanomedicine. 2019; 14: 2209-2226
        • Goulart E.
        • de Caires-Junior L.C.
        • Telles-Silva K.A.
        • et al.
        3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro.
        Biofabrication. 2019; 12015010
        • Beato F.
        • Reverón D.
        • Dezsi K.B.
        • et al.
        Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas.
        Lab Invest. 2021; 101: 204-217
        • Zhu C.-.H.
        • Zhang D-H
        • Zhu C.-.W.
        • et al.
        Adult stem cell transplantation combined with conventional therapy for the treatment of end-stage liver disease: a systematic review and meta-analysis.
        Stem Cell Res Ther. 2021; 12: 558
        • Sato Y.
        In vitro tumorigenicity tests for process control of health care products derived from human induced pluripotent stem cells.
        Yakugaku Zasshi. 2013; 133: 1381-1388
        • Hofer M.
        • Lutolf M.P.
        Engineering organoids.
        Nat Rev Mater. 2021; 6: 402-420
        • Kozlowski M.T.
        • Crook C.J.
        • Ku H.T.
        Towards organoid culture without Matrigel.
        Commun Biol. 2021; 4: 1387
        • Giobbe G.G.
        • Crowley C.
        • Luni C.
        • et al.
        Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture.
        Nat Commun. 2019; 10: 5658
        • Aisenbrey E.A.
        • Murphy W.L.
        Synthetic alternatives to Matrigel.
        Nat Rev Mater. 2020; 5: 539-551