Advertisement

Radiomics could predict surgery at 10 years in Crohn's disease

  • Lucrezia Laterza
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy
    Search for articles by this author
  • Luca Boldrini
    Affiliations
    Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology – Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L. go A. Gemelli 8, Rome 00168, Italy
    Search for articles by this author
  • Huong Elena Tran
    Correspondence
    Corresponding author.
    Affiliations
    Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology – Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L. go A. Gemelli 8, Rome 00168, Italy
    Search for articles by this author
  • Claudio Votta
    Affiliations
    Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology – Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L. go A. Gemelli 8, Rome 00168, Italy
    Search for articles by this author
  • Luigi Larosa
    Affiliations
    Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology – Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L. go A. Gemelli 8, Rome 00168, Italy
    Search for articles by this author
  • Laura Maria Minordi
    Affiliations
    Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology – Fondazione Policlinico Universitario "A. Gemelli" IRCCS, L. go A. Gemelli 8, Rome 00168, Italy
    Search for articles by this author
  • Rossella Maresca
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy
    Search for articles by this author
  • Daniela Pugliese
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy
    Search for articles by this author
  • Maria Assunta Zocco
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy
    Search for articles by this author
  • Maria Elena Ainora
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy
    Search for articles by this author
  • Loris Riccardo Lopetuso
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy

    Department of Medicine and Ageing Sciences,”G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy

    Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
    Search for articles by this author
  • Alfredo Papa
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy
    Search for articles by this author
  • Alessandro Armuzzi
    Affiliations
    IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
    Search for articles by this author
  • Antonio Gasbarrini
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy

    Dipartimento di Medicina e Chirurgia traslazionale, Università Cattolica del Sacro Cuore, L. go F. Vito 1, Rome 00168, Italy
    Search for articles by this author
  • Franco Scaldaferri
    Affiliations
    IBD Unit -UOS Malattie Infiammatorie Croniche Intestinali, CEMAD, Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, Roma 00168, Italy

    Dipartimento di Medicina e Chirurgia traslazionale, Università Cattolica del Sacro Cuore, L. go F. Vito 1, Rome 00168, Italy
    Search for articles by this author
Published:November 24, 2022DOI:https://doi.org/10.1016/j.dld.2022.11.005

      Abstract

      Background

      Predicting clinical outcomes represents a major challenge in Crohn's disease (CD). Radiomics provides a method to extract quantitative features from medical images and may successfully predict clinical course.

      Aims

      The aim of this pilot study is to evaluate the use of radiomics to predict 10-year surgery for CD patients.

      Methods

      We selected a cohort of CD patients with CT scan enterographies and a 10-year follow up. The R library Moddicom was used to extract radiomic features from each lesion of CD, segmented in the CT scans. A logistic regression model based on selected radiomic features was developed to predict 10-year surgery. The model was evaluated by computing the area under the curve (AUC) of the receiver operating characteristic curve, sensitivity, specificity, positive and negative predictive values (PPV, NPV).

      Results

      We enroled 30 patients, with 44 CT scans and 93 lesions. We extracted 217 radiomic features from each lesion. The developed model was based on two radiomic features and presented an AUC (95% CI) of 0.83 (0.73–0.91) in predicting 10-year surgery. Sensitivity, specificity, PPV, NPV of the radiomic model were equal to 0.72, 0.90, 0.79, 0.86, respectively.

      Conclusion

      Radiomics could be a helpful tool to identify patients with high risk for surgery and needing a stricter monitoring.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Spinelli A.
        • Sacchi M.
        • Fiorino G.
        • Danese S.
        • Montorsi M.
        Risk of postoperative recurrence and postoperative management of Crohn's disease.
        World J Gastroenterol. 2011; 17: 3213-3219https://doi.org/10.3748/WJG.V17.I27.3213
        • Koliani-Pace J.L.
        • Siegel C.A.
        Prognosticating the course of inflammatory bowel disease.
        Gastrointest Endosc Clin N Am. 2019; 29: 395-404https://doi.org/10.1016/J.GIEC.2019.02.003
        • Bane O.
        • Gee M.S.
        • Menys A.
        • Dillman J.R.
        • Taouli B.
        Emerging imaging biomarkers in Crohn disease.
        Top Magn Reson Imaging. 2021; 30: 31-41https://doi.org/10.1097/RMR.0000000000000264
        • Lambin P.
        • Leijenaar R.T.H.
        • Deist T.M.
        • Peerlings J.
        • De Jong E.E.C.
        • Van Timmeren J.
        • et al.
        Radiomics: the bridge between medical imaging and personalized medicine.
        Nat Rev Clin Oncol. 2017; 14: 749-762https://doi.org/10.1038/NRCLINONC.2017.141
        • Bodalal Z.
        • Trebeschi S.
        • Beets-Tan R.
        Radiomics: a critical step towards integrated healthcare.
        Insights Imaging. 2018; 9: 911-914https://doi.org/10.1007/S13244-018-0669-3
      1. Bodalal Z., Trebeschi S., Nguyen-Kim T.D.L., Schats W., Beets-Tan R. Radiogenomics: bridging imaging and genomics. Abdom Radiol (New York) 2019;44(6):1960–84. DOI: 10.1007/S00261-019-02028-W.

        • Li H.
        • Mo Y.
        • Huang C.
        • Ren Q.
        • Xia X.
        • Nan X.
        • et al.
        An MSCT-based radiomics nomogram combined with clinical factors can identify Crohn's disease and ulcerative colitis.
        Ann Transl Med. 2021; 9 (–572): 572https://doi.org/10.21037/ATM-21-1023
        • Lin S.
        • Lin X.
        • Li X.
        • Chen M.
        • Mao R.
        Making qualitative intestinal stricture quantitative: embracing radiomics in IBD.
        Inflamm Bowel Dis. 2020; 26: 743-745https://doi.org/10.1093/IBD/IZZ197
        • Stidham R.W.
        • Enchakalody B.
        • Waljee A.K.
        • Higgins P.D.R.
        • Wang S.C.
        • Su G.L.
        • et al.
        Assessing small bowel stricturing and morphology in Crohn's disease using semi-automated image analysis.
        Inflamm Bowel Dis. 2020; 26: 734-742https://doi.org/10.1093/IBD/IZZ196
        • Li X.
        • Liang D.
        • Meng J.
        • Zhou J.
        • Chen Z.
        • Huang S.
        • et al.
        Development and validation of a novel computed-tomography enterography radiomic approach for characterization of intestinal fibrosis in Crohn's disease.
        Gastroenterology. 2021; 160 (e11): 2303-2316https://doi.org/10.1053/J.GASTRO.2021.02.027
        • Chen Y.
        • Li H.
        • Feng J.
        • Suo S.
        • Feng Q.
        • Shen J.
        A novel radiomics nomogram for the prediction of secondary loss of response to infliximab in Crohn's disease.
        J Inflamm Res. 2021; 14: 2731-2740https://doi.org/10.2147/JIR.S314912
        • Silverberg M.S.
        • Satsangi J.
        • Ahmad T.
        • Arnott I.D.R.
        • Bernstein C.N.
        • Brant S.R.
        • et al.
        Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working party of the 2005 montreal world congress of gastroenterology.
        Can J Gastroenterol. 2005; 19https://doi.org/10.1155/2005/269076
        • Dinapoli N.
        • Alitto A.R.
        • Vallati M.
        • Gatta R.
        • Autorino R.
        • Boldrini L.
        • et al.
        Moddicom: a complete and easily accessible library for prognostic evaluations relying on image features.
        Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2015; (2015-November): 771-774https://doi.org/10.1109/EMBC.2015.7318476
        • Zwanenburg A.
        • Vallières M.
        • Abdalah M.A.
        • Aerts H.J.W.L.
        • Andrearczyk V.
        • Apte A.
        • et al.
        The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping.
        Radiology. 2020; 295: 328-338https://doi.org/10.1148/RADIOL.2020191145/ASSET/IMAGES/LARGE/RADIOL.2020191145.FIG5.JPEG
        • Scapicchio C.
        • Gabelloni M.
        • Barucci A.
        • Cioni D.
        • Saba L.
        • Neri E.
        A deep look into radiomics.
        Radiol Med. 2021; 126: 1296-1311https://doi.org/10.1007/S11547-021-01389-X
        • Kursa M.B.
        • Rudnicki W.R.
        Feature selection with the Boruta package.
        J Stat Softw. 2010; 36: 1-13https://doi.org/10.18637/JSS.V036.I11
      2. Hastie T., Tibshirani R., Friedman J. Model assessment and selection 2009:219–59. DOI: 10.1007/978-0-387-84858-7_7.

        • Moons K.G.M.
        • Altman D.G.
        • Reitsma J.B.
        • Ioannidis J.P.A.
        • Macaskill P.
        • Steyerberg E.W.
        • et al.
        Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration.
        Ann Intern Med. 2015; 162: W1-73https://doi.org/10.7326/M14-0698
        • Nattino G.
        • Finazzi S.
        • Bertolini G.
        A new test and graphical tool to assess the goodness of fit of logistic regression models.
        Stat Med. 2016; 35: 709-720https://doi.org/10.1002/SIM.6744
      3. Brown L.D., Cai T.T., Das Gupta A. Interval estimation for a binomial proportion. Https://DoiOrg/101214/Ss/1009213286 2001;16(2):101–33. DOI: 10.1214/SS/1009213286.

        • Akobeng A.K.
        • Akobeng A.K.
        Understanding diagnostic tests 2: likelihood ratios, pre- and post-test probabilities and their use in clinical practice.
        Acta Pædiatrica. 2007; 96: 487-491https://doi.org/10.1111/J.1651-2227.2006.00179.X
        • Caraguel C.G.B.
        • Vanderstichel R.
        The two-step Fagan's nomogram: ad hoc interpretation of a diagnostic test result without calculation.
        Evid Based Med. 2013; 18: 125-128https://doi.org/10.1136/EB-2013-101243
        • Fournier L.
        • Costaridou L.
        • Bidaut L.
        • Michoux N.
        • Lecouvet F.E.
        • de Geus-Oei L.F.
        • et al.
        Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers.
        Eur Radiol. 2021; 31: 6001-6012https://doi.org/10.1007/S00330-020-07598-8
        • Collins G.S.
        • Reitsma J.B.
        • Altman D.G.
        • Moons K.G.M.
        Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement.
        Br J Cancer. 2015; 112: 251-259https://doi.org/10.1038/BJC.2014.639