Advertisement

Critical signaling pathways governing colitis-associated colorectal cancer: Signaling, therapeutic implications, and challenges

Published:August 21, 2022DOI:https://doi.org/10.1016/j.dld.2022.08.012

      Abstract

      Long-term colitis in people with inflammatory bowel disease (IBD) may lead to colon cancer called colitis-associated colorectal cancer (CAC). Since the advent of preclinical prototypes of CAC, various immunological messaging cascades have been identified as implicated in developing this disease. The toll-like receptor (TLR)s, Janus kinase (JAK)-signal transducer and activator of transcription (STAT), Nuclear factor-kappa B (NF-κB), mammalian target of rapamycin complex (mTOR), autophagy, and oxidative stress are only a few of the molecular mechanisms that have been recognized as major components to CAC progression. These pathways may also represent attractive medicinal candidates for the prevention and management of CAC. CAC signaling mechanisms at the molecular level and how their dysregulation may cause illness are summarized in this comprehensive overview.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ranjbar M.
        • Salehi R.
        • Haghjooy Javanmard S.
        • Rafiee L.
        • Faraji H.
        • Jafarpor S.
        • et al.
        The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review.
        Cancer Cell Int. 2021; 21: 194
      1. Chen J Pitmon E Wang K Microbiome, inflammation and colorectal cancer. Seminars in immunology. Elsevier, 2017
        • Kraus S.
        • Arber N.
        Inflammation and colorectal cancer.
        Curr Opin Pharmacol. 2009; 9: 405-410
        • Fantini M.C.
        • Guadagni I.
        From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: pathogenesis and impact of current therapies.
        Dig Liver Dis. 2021;
        • Yashiro M.
        Ulcerative colitis-associated colorectal cancer.
        World J Gastroenterol. 2014; 20: 16389
        • Luo C.
        • Zhang H.
        The role of proinflammatory pathways in the pathogenesis of colitis-associated colorectal cancer.
        Mediators Inflamm. 2017; 2017
      2. Grivennikov SI Inflammation and colorectal cancer: colitis-associated neoplasia. seminars in immunopathology. Springer, 2013
        • Hou Q.
        • Huang J.
        • Xiong X.
        • Guo Y.
        Role of nutrient-sensing receptor GPRC6A in regulating colonic group 3 innate lymphoid cells and inflamed mucosal healing.
        J Crohns Colitis. 2022; https://doi.org/10.1093/ecco-jcc/jjac020
        • Eaden J.A.
        • Abrams K.R.
        • Mayberry J.F.
        The risk of colorectal cancer in ulcerative colitis: a meta-analysis.
        Gut. 2001; 48: 526-535
        • Castaño-Milla C.
        • Chaparro M.
        • Gisbert J.
        Systematic review with meta-analysis: the declining risk of colorectal cancer in ulcerative colitis.
        Aliment Pharmacol Ther. 2014; 39: 645-659
        • Canavan C.
        • Abrams K.
        • Mayberry J.
        Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn's disease.
        Aliment Pharmacol Ther. 2006; 23: 1097-1104
        • Sebastian S.
        • Hernández H.V.
        • Myrelid P.
        • Kariv R.
        • Tsianos E.
        • Toruner M.
        • et al.
        Colorectal cancer in inflammatory bowel disease: results of the 3rd ECCO pathogenesis scientific workshop (I).
        J Crohn's Colitis. 2014; 8: 5-18
        • Itzkowitz S.H.
        • Yio X.
        Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation.
        Am J Physiol-Gastrointest Liver Physiol. 2004; 287: G7-G17
        • Itzkowitz S.H.
        Molecular biology of dysplasia and cancer in inflammatory bowel disease.
        Gastroenterol Clin. 2006; 35: 553-571
        • Azer S.A.
        Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development.
        Eur J Gastroenterol Hepatol. 2013; 25: 271-281
        • Sartorius R.
        • Trovato M.
        • Manco R.
        • D'Apice L.
        • De Berardinis P.
        Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines.
        npj Vaccines. 2021; 6: 127
        • Vijay K.
        Toll-like receptors in immunity and inflammatory diseases: past, present, and future.
        Int Immunopharmacol. 2018; 59: 391-412
        • Iranshahi N.
        • Assar S.
        • Amiri S.M.
        • Zafari P.
        • Fekri A.
        • Taghadosi M.
        Decreased Gene Expression of Epstein-Barr Virus-Induced Gene 3 (EBI-3) may Contribute to the Pathogenesis of Rheumatoid Arthritis.
        Immunol Invest. 2019; 48: 367-377
        • Kanzler H.
        • Barrat F.J.
        • Hessel E.M.
        • Coffman R.L.
        Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists.
        Nat Med. 2007; 13: 552-559
        • Sipos F.
        • Fűri I.
        • Constantinovits M.
        • Tulassay Z.
        • Műzes G.
        Contribution of TLR signaling to the pathogenesis of colitis-associated cancer in inflammatory bowel disease.
        World J Gastroenterol. 2014; 20: 12713-12721
        • Lei J.
        • Dong Y.
        • Hou Q.
        • He Y.
        • Lai Y.
        • Liao C.
        • Zhang B.
        Intestinal microbiota regulate certain meat quality parameters in chicken.
        Frontiers in nutrition (Lausanne). 2022; 9: 747705https://doi.org/10.3389/fnut.2022.747705
        • Lu Q.
        • Ding H.
        • Li W.
        Role of Toll-like receptors in microbiota-associated gastrointestinal cancer metastasis.
        J Cancer Res Ther. 2013; 9: 142
        • Hong E.-.H.
        • Cho J.
        • J-h Ahn
        • Kwon B.-.E.
        • Kweon M.-.N.
        • Seo S.-.U.
        • et al.
        Plasmacytoid dendritic cells regulate colitis-associated tumorigenesis by controlling myeloid-derived suppressor cell infiltration.
        Cancer Lett. 2020; 493: 102-112
        • Grimmig T.
        • Matthes N.
        • Hoeland K.
        • Tripathi S.
        • Chandraker A.
        • Grimm M.
        • et al.
        TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer.
        Int J Oncol. 2015; 47: 857-866
        • Ochi A.
        • Graffeo C.S.
        • Zambirinis C.P.
        • Rehman A.
        • Hackman M.
        • Fallon N.
        • et al.
        Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans.
        J Clin Invest. 2012; 122: 4118-4129
        • Fukata M.
        • Shang L.
        • Santaolalla R.
        • Sotolongo J.
        • Pastorini C.
        • España C.
        • et al.
        Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis.
        Inflamm Bowel Dis. 2011; 17: 1464-1473
        • Fukata M.
        • Hernandez Y.
        • Conduah D.
        • Cohen J.
        • Chen A.
        • Breglio K.
        • et al.
        Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors.
        Inflamm Bowel Dis. 2009; 15: 997-1006
        • Yao D.
        • Dong M.
        • Dai C.
        • Wu S.
        Inflammation and inflammatory cytokine contribute to the initiation and development of ulcerative colitis and its associated cancer.
        Inflamm Bowel Dis. 2019; 25: 1595-1602
        • Fukata M.
        • Chen A.
        • Vamadevan A.S.
        • Cohen J.
        • Breglio K.
        • Krishnareddy S.
        • et al.
        Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors.
        Gastroenterology. 2007; 133 (1869-. e14)
        • Ye K.
        • Wu Y.
        • Sun Y.
        • Xu J.
        TLR4 siRNA inhibits proliferation and invasion in colorectal cancer cells by downregulating ACAT1 expression.
        Life Sci. 2016; 155: 133-139
        • Kuo W.-.T.
        • Lee T.-.C.
        • Yu L.C.-.H.
        Eritoran suppresses colon cancer by altering a functional balance in toll-like receptors that bind lipopolysaccharide.
        Cancer Res. 2016; 76: 4684-4695
        • Wu Y.
        • Wu J.
        • Chen T.
        • Li Q.
        • Peng W.
        • Li H.
        • et al.
        Fusobacterium nucleatum potentiates intestinal tumorigenesis in mice via a Toll-like receptor 4/p21-activated kinase 1 cascade.
        Dig Dis Sci. 2018; 63: 1210-1218
        • Tang X.
        • Zhu Y.
        TLR4 signaling promotes immune escape of human colon cancer cells by inducing immunosuppressive cytokines and apoptosis resistance.
        Oncol Res Feat Preclinic Clinic Cancer Therap. 2012; 20: 15-24
        • Fukata M.
        • Chen A.
        • Klepper A.
        • Krishnareddy S.
        • Vamadevan A.S.
        • Thomas L.S.
        • et al.
        Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine.
        Gastroenterology. 2006; 131: 862-877
        • Shi Y.-.J.
        • Hu S.-.J.
        • Zhao Q.-.Q.
        • Liu X.-.S.
        • Liu C.
        • Wang H.
        Toll-like receptor 4 (TLR4) deficiency aggravates dextran sulfate sodium (DSS)-induced intestinal injury by down-regulating IL6, CCL2 and CSF3.
        Ann Transl Med. 2019; 7
        • Zhuo Z.
        • Wan Y.
        • Guan D.
        • Ni S.
        • Wang L.
        • Zhang Z.
        • Zhang B.T.
        A loop...based and AGO-incorporated virtual screening model targeting AGO...mediated miRNA–mRNA interactions for drug discovery to rescue bone phenotype in genetically modified mice.
        Adv Sci. 2020; 7: 1903451https://doi.org/10.1002/advs.201903451
        • Quinn E.M.
        • Wang J.
        • Redmond H.P
        The emerging role of microRNA in regulation of endotoxin tolerance.
        J Leukoc Biol. 2012; 91: 721-727
        • Litak J.
        • Grochowski C.
        • Litak J.
        • Osuchowska I.
        • Gosik K.
        • Radzikowska E.
        • et al.
        TLR-4 signaling vs. Immune checkpoints, mirnas molecules, cancer stem cells, and wingless-signaling interplay in glioblastoma multiforme—Future perspectives.
        Int J Mol Sci. 2020; 21: 3114
        • Lu Z.-.J.
        • Wu J.-.J.
        • Jiang W.-.L.
        • Xiao J.-.H.
        • Tao K.-.Z.
        • Ma L.
        • et al.
        MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression.
        World J Gastroenterol. 2017; 23: 976
        • Zhu F.
        • Li H.
        • Liu Y.
        • Tan C.
        • Liu X.
        • Fan H.
        • et al.
        miR-155 antagomir protect against DSS-induced colitis in mice through regulating Th17/Treg cell balance by Jarid2/Wnt/β-catenin.
        Biomed Pharmacother. 2020; 126109909
        • El-Daly S.M.
        • Omara E.A.
        • Hussein J.
        • Youness E.R.
        • El-Khayat Z.
        Differential expression of miRNAs regulating NF-κB and STAT3 crosstalk during colitis-associated tumorigenesis.
        Mol Cell Probes. 2019; 47101442
        • Vigorito E.
        • Kohlhaas S.
        • Lu D.
        • Leyland R.
        miR-155: an ancient regulator of the immune system.
        Immunol Rev. 2013; 253: 146-157
        • Quinn S.R.
        • O'Neill L.A.
        A trio of microRNAs that control Toll-like receptor signalling.
        Int Immunol. 2011; 23: 421-425
        • Marques-Rocha J.
        • Garcia-Lacarte M.
        • Samblas M.
        • Bressan J.
        • Martínez J.
        • Milagro F.
        Regulatory roles of miR-155 and let-7b on the expression of inflammation-related genes in THP-1 cells: effects of fatty acids.
        J Physiol Biochem. 2018; 74: 579-589
        • Levy D.E.
        • Kessler D.S.
        • Pine R.
        • Reich N.
        • Darnell J.
        Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control.
        Genes Dev. 1988; 2: 383-393
        • Edmonson J.
        • LoTurco J.
        • Blanton M.
        • Kriegestein A.
        • Moran D.
        Interferon-dependent tyrosine phosphorylation of latent cytoplasmic transcription factor.
        Science. 1991; 43: 121
        • Rawlings J.S.
        • Rosler K.M.
        • Harrison D.A.
        The JAK/STAT signaling pathway.
        J Cell Sci. 2004; 117: 1281-1283
        • Levy D.E.
        • Darnell J.
        Stats: transcriptional control and biological impact.
        Nat Rev Mol Cell Biol. 2002; 3: 651-662
        • Lokau J.
        • Schoeder V.
        • Haybaeck J.
        • Garbers C.
        Jak-stat signaling induced by interleukin-6 family cytokines in hepatocellular carcinoma.
        Cancers. 2019; 11: 1704
        • Zundler S.
        • Neurath M.F.
        Integrating immunologic signaling networks: the JAK/STAT pathway in colitis and colitis-associated cancer.
        Vaccines. 2016; 4: 5
        • Durant L.
        • Watford W.T.
        • Ramos H.L.
        • Laurence A.
        • Vahedi G.
        • Wei L.
        • et al.
        Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis.
        Immunity. 2010; 32: 605-615
        • Lu D.
        • Liu L.
        • Ji X.
        • Gao Y.
        • Chen X.
        • Liu Y.
        • et al.
        The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH 17 differentiation.
        Nat Immunol. 2015; 16: 1263-1273
        • Ahern P.P.
        • Schiering C.
        • Buonocore S.
        • McGeachy M.J.
        • Cua D.J.
        • Maloy K.J.
        • et al.
        Interleukin-23 drives intestinal inflammation through direct activity on T cells.
        Immunity. 2010; 33: 279-288
        • Leppkes M.
        • Becker C.
        • Ivanov I.I.
        • Hirth S.
        • Wirtz S.
        • Neufert C.
        • et al.
        RORγ-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F.
        Gastroenterology. 2009; 136: 257-267
        • Bollrath J.
        • Phesse T.J.
        • von Burstin V.A.
        • Putoczki T.
        • Bennecke M.
        • Bateman T.
        • et al.
        gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis.
        Cancer Cell. 2009; 15: 91-102
        • Grivennikov S.
        • Karin E.
        • Terzic J.
        • Mucida D.
        • Yu G.-.Y.
        • Vallabhapurapu S.
        • et al.
        IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer.
        Cancer Cell. 2009; 15: 103-113
        • Putoczki T.L.
        • Thiem S.
        • Loving A.
        • Busuttil R.A.
        • Wilson N.J.
        • Ziegler P.K.
        • et al.
        Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically.
        Cancer Cell. 2013; 24: 257-271
        • Waldner M.J.
        • Wirtz S.
        • Jefremow A.
        • Warntjen M.
        • Neufert C.
        • Atreya R.
        • et al.
        VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer.
        J Exp Med. 2010; 207: 2855-2868
        • Jiang R.
        • Wang H.
        • Deng L.
        • Hou J.
        • Shi R.
        • Yao M.
        • et al.
        IL-22 is related to development of human colon cancer by activation of STAT3.
        BMC Cancer. 2013; 13: 1-11
        • Stolfi C.
        • Rizzo A.
        • Franzè E.
        • Rotondi A.
        • Fantini M.C.
        • Sarra M.
        • et al.
        Involvement of interleukin-21 in the regulation of colitis-associated colon cancer.
        J Exp Med. 2011; 208: 2279-2290
        • Zundler S.
        • Neurath M.F.
        Immunopathogenesis of inflammatory bowel diseases: functional role of T cells and T cell homing.
        Clin Exp Rheumatol. 2015; 33: S19-S28
        • Wick E.C.
        • LeBlanc R.E.
        • Ortega G.
        • Robinson C.
        • Platz E.
        • Pardoll D.M.
        • et al.
        Shift from pStat6 to pStat3 predominance is associated with inflammatory bowel disease-associated dysplasia.
        Inflamm Bowel Dis. 2012; 18: 1267-1274
        • Zhang M.
        • Zhou Y.
        • Xie C.
        • Zhou F.
        • Chen Y.
        • Han G.
        • et al.
        STAT6 specific shRNA inhibits proliferation and induces apoptosis in colon cancer HT-29 cells.
        Cancer Lett. 2006; 243: 38-46
        • Di Stefano A.
        • Iovino F.
        • Lombardo Y.
        • Eterno V.
        • Höger T.
        • Dieli F.
        • et al.
        Survivin is regulated by interleukin-4 in colon cancer stem cells.
        J Cell Physiol. 2010; 225: 555-561
        • Yin X-l
        • Wang N.
        • Wei X.
        • Xie G-f
        • Li J-j
        • Liang H-j.
        Interleukin-12 inhibits the survival of human colon cancer stem cells in vitro and their tumor initiating capacity in mice.
        Cancer Lett. 2012; 322: 92-97
        • Viennois E.
        • Chen F.
        • Merlin D
        NF-κB pathway in colitis-associated cancers.
        Transl Gastrointest Cancer. 2013; 2: 21-29
        • Zafari P.
        • Yari K.
        • Mostafaei S.
        • et al.
        Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed Rheumatoid Arthritis patients.
        Immunol Invest. 2018; 47: 632-642
      3. Schottelius AJ, Dinter H. Cytokines, NF-κB, microenvironment, intestinal inflammation and cancer. The Link Between Inflammation and Cancer. 2006:67–87. doi:10.1007/0-387-26283-0_3.

        • Greten F.R.
        • Eckmann L.
        • Greten T.F.
        • Park J.M.
        • Li Z.-.W.
        • Egan L.J.
        • et al.
        IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer.
        Cell. 2004; 118: 285-296
        • Kojima M.
        • Morisaki T.
        • Sasaki N.
        • Nakano K.
        • Mibu R.
        • Tanaka M.
        • et al.
        Increased nuclear factor-kB activation in human colorectal carcinoma and its correlation with tumor progression.
        Anticancer Res. 2004; 24: 675-682
        • Xia L.
        • Tan S.
        • Zhou Y.
        • Lin J.
        • Wang H.
        • Oyang L.
        • et al.
        Role of the NFκB-signaling pathway in cancer.
        Onco Targets Ther. 2018; 11: 2063-2073
        • Iranshahi N.
        • Zafari P.
        • Yari K.H.
        • Alizadeh E.
        The most common genes involved in epigenetics modifications among Iranian patients with breast cancer: a systematic review.
        Cell Mol Biol. 2016; 62: 116-122
        • Greten F.R.
        • Karin M.
        The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer.
        Cancer Lett. 2004; 206: 193-199
        • Nenci A.
        • Becker C.
        • Wullaert A.
        • Gareus R.
        • Van Loo G.
        • Danese S.
        • et al.
        Epithelial NEMO links innate immunity to chronic intestinal inflammation.
        Nature. 2007; 446: 557-561
        • Moradinasab S.
        • Pourbagheri-Sigaroodi A.
        • Zafari P.
        • Ghaffari S.H.
        • Bashash D.
        Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles in COVID-19-induced ARDS: mechanisms of action, research progress, challenges, and opportunities.
        Int Immunopharmacol. 2021; 97107694
        • Lotfi R.
        • Nasiri Kalmarzi R.
        • Rajabinejad M.
        • Hasani S.
        • Zamani F
        The role of immune semaphorins in the pathogenesis of multiple sclerosis: potential therapeutic targets.
        Int Immunopharmacol. 2021; 95107556
        • Strimpakos A.S.
        • Karapanagiotou E.M.
        • Saif M.W.
        • Syrigos K.N.
        The role of mTOR in the management of solid tumors: an overview.
        Cancer Treat Rev. 2009; 35: 148-159
        • Guertin D.A.
        • Sabatini D.M.
        Defining the role of mTOR in cancer.
        Cancer Cell. 2007; 12: 9-22
        • Samimi Z.
        • Kardideh B.
        • Zafari P.
        • Bahrehmand F.
        • Roghani S.A.
        • Taghadosi M.
        The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients.
        Mol Biol Rep. 2019; 46: 6353-6360
        • Delgoffe G.M.
        • Powell J.D.
        mTOR: taking cues from the immune microenvironment.
        Immunology. 2009; 127: 459-465
        • Zhang D-M
        • Liu J.-.S.
        • Deng L-J
        • Chen M.-F.
        • Yiu A.
        • Cao H.-H.
        • et al.
        Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway.
        Carcinogenesis. 2013; 34: 1331-1342
        • Slomovitz B.M.
        • Coleman R.L.
        The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer.
        Clin Cancer Res. 2012; 18: 5856-5864
        • Ma J.
        • Meng Y.
        • Kwiatkowski D.J.
        • Chen X.
        • Peng H.
        • Sun Q.
        • et al.
        Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade.
        J Clin Invest. 2010; 120: 103-114
        • Farkas S.
        • Hornung M.
        • Sattler C.
        • Guba M.
        • Steinbauer M.
        • Anthuber M.
        • et al.
        Rapamycin decreases leukocyte migration in vivo and effectively reduces experimentally induced chronic colitis.
        Int J Colorectal Dis. 2006; 21: 747-753
        • He Z.
        • He X.
        • Chen Z.
        • Ke J.
        • He X.
        • Yuan R.
        • et al.
        Activation of the mTORC1 and STAT3 pathways promotes the malignant transformation of colitis in mice.
        Oncol Rep. 2014; 32: 1873-1880
        • Boya P.
        • Reggiori F.
        • Codogno P.
        Emerging regulation and functions of autophagy.
        Nat Cell Biol. 2013; 15: 713-720
        • Saito M.
        • Katsuno T.
        • Nakagawa T.
        • Sato T.
        • Noguchi Y.
        • Sazuka S.
        • et al.
        Intestinal epithelial cells with impaired autophagy lose their adhesive capacity in the presence of TNF-α.
        Dig Dis Sci. 2012; 57: 2022-2030
        • Cadwell K.
        • Liu J.Y.
        • Brown S.L.
        • Miyoshi H.
        • Loh J.
        • Lennerz J.K.
        • et al.
        A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells.
        Nature. 2008; 456: 259-263
        • Levy J.
        • Cacheux W.
        • Bara M.A.
        • L'Hermitte A.
        • Lepage P.
        • Fraudeau M.
        • et al.
        Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth.
        Nat Cell Biol. 2015; 17: 1062-1073
        • Wen Y.-.A.
        • Xing X.
        • Harris J.W.
        • Zaytseva Y.Y.
        • Mitov M.I.
        • Napier D.L.
        • et al.
        Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer.
        Cell Death Dis. 2017; 8 (e2593-e)
        • Xie C.-.M.
        • Liu X.-.Y.
        • Sham K.W.
        • Lai J.M.
        • Cheng C.H.
        Silencing of EEF2K (eukaryotic elongation factor-2 kinase) reveals AMPK-ULK1-dependent autophagy in colon cancer cells.
        Autophagy. 2014; 10: 1495-1508
        • Sun Y.
        • Xing X.
        • Liu Q.
        • Wang Z.
        • Xin Y.
        • Zhang P.
        • et al.
        Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells.
        Int J Oncol. 2015; 46: 750-756
        • Lahiri A.
        • Hedl M.
        • Abraham C.
        MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation.
        Proc Natl Acad Sci. 2015; 112: 10461-10466
        • D'Autréaux B.
        • Toledano M.B.
        ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.
        Nat Rev Mol Cell Biol. 2007; 8: 813-824
        • Lambert G.
        Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects.
        J Anim Sci. 2009; 87: E101-E1E8
        • Dizdaroglu M.
        • Jaruga P.
        • Birincioglu M.
        • Rodriguez H.
        Free radical-induced damage to DNA: mechanisms and measurement.
        Free Radical Biol Med. 2002; 32: 1102-1115
        • Wang F.-.Y.
        • Arisawa T.
        • Tahara T.
        • Takahama K.
        • Watanabe M.
        • Hirata I.
        • et al.
        Aberrant DNA methylation in ulcerative colitis without neoplasia.
        Hepatogastroenterology. 2008; 55: 62-65
        • Sifroni K.G.
        • Damiani C.R.
        • Stoffel C.
        • Cardoso M.R.
        • Ferreira G.K.
        • IC Jeremias
        • et al.
        Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis.
        Mol Cell Biochem. 2010; 342: 111-115
        • Santhanam S.
        • Venkatraman A.
        • Ramakrishna B.S.
        Impairment of mitochondrial acetoacetyl CoA thiolase activity in the colonic mucosa of patients with ulcerative colitis.
        Gut. 2007; 56: 1543-1549
        • Santhanam S.
        • Rajamanickam S.
        • Motamarry A.
        • Ramakrishna B.S.
        • Amirtharaj J.G.
        • Ramachandran A.
        • et al.
        Mitochondrial electron transport chain complex dysfunction in the colonic mucosa in ulcerative colitis.
        Inflamm Bowel Dis. 2012; 18: 2158-2168
        • Rath E.
        • Haller D.
        Unfolded protein responses in the intestinal epithelium: sensors for the microbial and metabolic environment.
        J Clin Gastroenterol. 2012; 46: S3-S5
        • Hsieh S.Y.
        • Shih T.C.
        • Yeh C.Y.
        • Lin C.J.
        • Chou Y.Y.
        • Lee Y.S.
        Comparative proteomic studies on the pathogenesis of human ulcerative colitis.
        Proteomics. 2006; 6: 5322-5331
        • Brentnall T.A.
        • Pan S.
        • Bronner M.P.
        • Crispin D.A.
        • Mirzaei H.
        • Cooke K.
        • et al.
        Proteins that underlie neoplastic progression of ulcerative colitis.
        PROTEOMICS–Clinic Appl. 2009; 3: 1326-1337
        • Ussakli C.H.
        • Ebaee A.
        • Binkley J.
        • Brentnall T.A.
        • Emond M.J.
        • Rabinovitch P.S.
        • et al.
        Mitochondria and tumor progression in ulcerative colitis.
        J Natl Cancer Inst. 2013; 105: 1239-1248
        • Yan J.
        • Yao Y.
        • Yan S.
        • Gao R.
        • Lu W.
        • He W.
        Chiral Protein Supraparticles for Tumor Suppression and Synergistic Immunotherapy: An Enabling Strategy for Bioactive Supramolecular Chirality Construction.
        Nano letters. 2020; 20: 5844-5852https://doi.org/10.1021/acs.nanolett.0c01757
        • Liu C.
        • Wang Y.
        • Li L.
        • He D.
        • Chi J.
        • Li Q.
        • Liao Y.
        Engineered extracellular vesicles and their mimetics for cancer immunotherapy.
        J Control Release. 2022; 349: 679-698https://doi.org/10.1016/j.jconrel.2022.05.062
        • Kaur M.
        • Velmurugan B.
        • Tyagi A.
        • Agarwal C.
        • Singh R.P.
        • Agarwal R.
        Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling.
        Neoplasia. 2010; 12: 415-424
        • Woo S.M.
        • Min K.J.
        • Kim S.
        • Park J.W.
        • Kim D.E.
        • Chun K.S.
        • et al.
        Silibinin induces apoptosis of HT29 colon carcinoma cells through early growth response-1 (EGR-1)-mediated non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) up-regulation.
        Chem Biol Interact. 2014; 211: 36-43
        • Zheng R.
        • Ma J.
        • Wang D.
        • Dong W.
        • Wang S.
        • Liu T.
        • et al.
        Chemopreventive effects of silibinin on colitis-associated tumorigenesis by inhibiting IL-6/STAT3 signaling pathway.
        Mediators Inflamm. 2018; 20181562010
        • Kaneko M.
        • Nozawa H.
        • Hiyoshi M.
        • Tada N.
        • Murono K.
        • Nirei T.
        • et al.
        Temsirolimus and chloroquine cooperatively exhibit a potent antitumor effect against colorectal cancer cells.
        J Cancer Res Clin Oncol. 2014; 140: 769-781
        • Guo W.
        • Sun Y.
        • Liu W.
        • Wu X.
        • Guo L.
        • Cai P.
        • et al.
        Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer.
        Autophagy. 2014; 10: 972-985
        • Stephens T.D.
        • Fillmore B.J.
        Hypothesis: thalidomide embryopathy-proposed mechanism of action.
        Teratology. 2000; 61: 189-195
        • SH J.I.N.
        • TI K.I.M.
        • DS H.A.N.
        • SK S.H.I.N.
        • WH K.I.M.
        Thalidomide Suppresses the Interleukin 1β-Induced NFκB Signaling Pathway in Colon Cancer Cells.
        Ann N Y Acad Sci. 2002; 973: 414-418
        • Jani T.S.
        • DeVecchio J.
        • Mazumdar T.
        • Agyeman A.
        • Houghton J.A.
        Inhibition of NF-κB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin.
        J Biol Chem. 2010; 285: 19162-19172
        • Sandur S.K.
        • Deorukhkar A.
        • Pandey M.K.
        • Pabón A.M.
        • Shentu S.
        • Guha S.
        • et al.
        Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity.
        Int J Radiat Oncol Biol Phys. 2009; 75: 534-542
        • Al-Halabi R.
        • Bou Chedid M.
        • Abou Merhi R.
        • El-Hajj H.
        • Zahr H.
        • Schneider-Stock R.
        • et al.
        Gallotannin inhibits NFĸB signaling and growth of human colon cancer xenografts.
        Cancer Biol Ther. 2011; 12: 59-68
        • Lin L.
        • Sun Y.
        • Wang D.
        • Zheng S.
        • Zhang J.
        • Zheng C.
        Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition.
        Front Pharmacol. 2016; 6: 320
        • Sandborn W.J.
        • Ghosh S.
        • Panes J.
        • Vranic I.
        • Su C.
        • Rousell S.
        • et al.
        Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis.
        N Engl J Med. 2012; 367: 616-624
        • Rao C.V.
        • Indranie C.
        • Simi B.
        • Manning P.T.
        • Connor J.R.
        • Reddy B.S.
        Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor.
        Cancer Res. 2002; 62: 165-170
        • Xue X.
        • Bredell B.X.
        • Anderson E.R.
        • Martin A.
        • Mays C.
        • Nagao-Kitamoto H.
        • et al.
        Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer.
        Proc Natl Acad Sci U S A. 2017; 114: E9608-E9e17
        • Su C.-.C.
        • Chen G.-.W.
        • Lin J.-.G.
        • Wu L-T
        • Chung J.-.G.
        Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions.
        Anticancer Res. 2006; 26: 1281-1288
        • Aggarwal S.
        • Ichikawa H.
        • Takada Y.
        • Sandur S.K.
        • Shishodia S.
        • Aggarwal B.B.
        Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation.
        Mol Pharmacol. 2006; 69: 195-206
        • Erdelyi K.
        • Kiss A.
        • Bakondi E.
        • Bai P.
        • Szabo C.
        • Gergely P.
        • et al.
        Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells.
        Mol Pharmacol. 2005; 68: 895-904
        • Lin L.
        • Sun Y.
        • Wang D.
        • Zheng S.
        • Zhang J.
        • Zheng C.
        Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition.
        Front Pharmacol. 2015; 6: 320