Advertisement
Review Article| Volume 54, ISSUE 10, P1291-1303, October 2022

Application of histology-agnostic treatments in metastatic colorectal cancer

  • Andrea Sartore-Bianchi
    Affiliations
    Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy

    Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
    Search for articles by this author
  • Alberto Giuseppe Agostara
    Affiliations
    Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy

    Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
    Search for articles by this author
  • Giorgio Patelli
    Affiliations
    Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy

    Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
    Search for articles by this author
  • Gianluca Mauri
    Affiliations
    Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy

    IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
    Search for articles by this author
  • Elio Gregory Pizzutilo
    Affiliations
    Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy

    Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
    Search for articles by this author
  • Salvatore Siena
    Correspondence
    Corresponding author at: Department of Hematology, Oncology and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3,20162 Milano, Italy.
    Affiliations
    Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy

    Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
    Search for articles by this author

      Abstract

      Cancer treatment is increasingly focused on targeting molecular alterations identified across different tumor histologies. While some oncogenic drivers such as microsatellite instability (MSI) and NTRK fusions are actionable with the very same approach regardless of tumor type (“histology-agnostic”), others require histology-specific therapeutic adjustment (“histology-tuned”) by means of adopting specific inhibitors and ad hoc combinations.
      Among histology-agnostic therapies, pembrolizumab or dostarlimab demonstrated comparable activity in MSI metastatic colorectal cancer (mCRC) as in other tumors with MSI status (ORR 38% vs 40% and 36% vs 39%, respectively), while entrectinib or larotrectinib proved effective in NTRK rearranged mCRC even though less dramatically than in the overall population (ORR 20% vs 57%, and 50% vs 78%, respectively). Histology-tuned approaches in mCRC are those targeting BRAFV600E mutations and ERBB2 amplification, highlighting the need of simultaneous anti-EGFR blockade or careful choice of companion inhibitors in this tumor type. Anti-RET and anti-ALK therapies emerged as a potential histology-agnostic indications, while anti-KRASG12C strategies could develop as future histology-tuned therapies. Targeting of ERBB2 mutations and NRG1 fusion provided discrepant results. In conclusion, agnostic targets such as MSI and NTRK fusions are already exploitable in mCRC, while the plethora of emerging histology-tuned targets represent a challenging opportunity requiring concurrent evolution of molecular diagnostic tools.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kurzrock R.
        • Kantarjian H.M.
        • Kesselheim A.S.
        • Sigal E.V.
        New drug approvals in oncology.
        Nat Rev Clin Oncol. 2020; 17: 140-146https://doi.org/10.1038/s41571-019-0313-2
        • Oaknin A.
        • Tinker A.V.
        • Gilbert L.
        • Samouëlian V.
        • Mathews C.
        • Brown J.
        • Barretina-Ginesta M.-.P.
        • Moreno V.
        • Gravina A.
        • Abdeddaim C.
        • et al.
        Clinical activity and safety of the anti–programmed death 1 monoclonal antibody dostarlimab for patients with recurrent or advanced mismatch repair–deficient endometrial cancer.
        JAMA Oncol. 2020; 6: 1-7https://doi.org/10.1001/jamaoncol.2020.4515
        • Doebele R.C.
        • Drilon A.
        • Paz-Ares L.
        • Siena S.
        • Shaw A.T.
        • Farago A.F.
        • Blakely C.M.
        • Seto T.
        • Cho B.C.
        • Tosi D.
        • et al.
        Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials.
        Lancet Oncol. 2020; 21: 271-282https://doi.org/10.1016/S1470-2045(19)30691-6
        • Le D.T.
        • Kim T.W.
        • Van Cutsem E.
        • Geva R.
        • Jäger D.
        • Hara H.
        • Burge M.
        • O'Neil B.
        • Kavan P.
        • Yoshino T.
        • et al.
        Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164.
        J Clin Oncol. 2020; 38: 11-19https://doi.org/10.1200/JCO.19.02107
        • Marabelle A.
        • Fakih M.
        • Lopez J.
        • Shah M.
        • Shapira-Frommer R.
        • Nakagawa K.
        • Chung H.C.
        • Kindler H.L.
        • Lopez-Martin J.A.
        • Miller W.H.
        • et al.
        Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study.
        Lancet Oncol. 2020; 21: 1353-1365https://doi.org/10.1016/S1470-2045(20)30445-9
        • Drilon A.
        • Laetsch T.W.
        • Kummar S.
        • DuBois S.G.
        • Lassen U.N.
        • Demetri G.D.
        • Nathenson M.
        • Doebele R.C.
        • Farago A.F.
        • Pappo A.S.
        • et al.
        Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children.
        N Engl J Med. 2018; 378: 731-739https://doi.org/10.1056/NEJMoa1714448
        • Yarchoan M.
        • Hopkins A.
        • Jaffee E.M.
        Tumor mutational burden and response rate to PD-1 inhibition.
        N Engl J Med. 2017; 377: 2500-2501https://doi.org/10.1056/NEJMc1713444
        • Chapman P.B.
        • Hauschild A.
        • Robert C.
        • Haanen J.B.
        • Ascierto P.
        • Larkin J.
        • Dummer R.
        • Garbe C.
        • Testori A.
        • Maio M.
        • et al.
        Improved Survival with vemurafenib in melanoma with BRAF V600E mutation.
        N Engl J Med. 2011; 364: 2507-2516https://doi.org/10.1056/NEJMoa1103782
        • Hyman D.M.
        • Puzanov I.
        • Subbiah V.
        • Faris J.E.
        • Chau I.
        • Blay J.-.Y.
        • Wolf J.
        • Raje N.S.
        • Diamond E.L.
        • Hollebecque A.
        • et al.
        Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations.
        N Engl J Med. 2015; 373: 726-736https://doi.org/10.1056/NEJMoa1502309
        • Mauri G.
        • Bonazzina E.
        • Amatu A.
        • Tosi F.
        • Bencardino K.
        • Gori V.
        • Massihnia D.
        • Cipani T.
        • Spina F.
        • Ghezzi S.
        • et al.
        The Evolutionary landscape of treatment for BRAFV600E mutant metastatic colorectal cancer.
        Cancers (Basel). 2021; 13: 137https://doi.org/10.3390/cancers13010137
        • Fanelli G.N.
        • Dal Pozzo C.A.
        • Depetris I.
        • Schirripa M.
        • Brignola S.
        • Biason P.
        • Balistreri M.
        • Dal Santo L.
        • Lonardi S.
        • Munari G.;.
        • et al.
        The heterogeneous clinical and pathological landscapes of metastatic braf-mutated colorectal cancer.
        Cancer Cell Int. 2020; 20: 30https://doi.org/10.1186/s12935-020-1117-2
        • Sartore-Bianchi A.
        • Trusolino L.
        • Martino C.
        • Bencardino K.
        • Lonardi S.
        • Bergamo F.
        • Zagonel V.
        • Leone F.
        • Depetris I.
        • Martinelli E.
        • et al.
        Dual-Targeted Therapy with Trastuzumab and Lapatinib in Treatment-Refractory, KRAS Codon 12/13 Wild-Type, HER2-Positive Metastatic Colorectal Cancer (HERACLES): a Proof-of-Concept, Multicentre, Open-Label, Phase 2 Trial.
        Lancet Oncol. 2016; 17: 738-746https://doi.org/10.1016/S1470-2045(16)00150-9
        • Siena S.
        • Di Bartolomeo M.
        • Raghav K.
        • Masuishi T.
        • Loupakis F.
        • Kawakami H.
        • Yamaguchi K.
        • Nishina T.
        • Fakih M.
        • Elez E.
        • et al.
        Trastuzumab Deruxtecan (DS-8201) in Patients with HER2-Expressing Metastatic Colorectal Cancer (DESTINY-CRC01): a Multicentre, Open-Label, Phase 2 Trial.
        Lancet Oncol. 2021; 22: 779-789https://doi.org/10.1016/S1470-2045(21)00086-3
        • Siegel R.L.
        • Miller K.D.
        • Fuchs H.E.
        • Jemal A.
        Cancer statistics, 2021.
        CA. Cancer J Clin. 2021; 71: 7-33https://doi.org/10.3322/caac.21654
        • Sung H.
        • Ferlay J.
        • Siegel R.L.
        • Laversanne M.
        • Soerjomataram I.
        • Jemal A.
        • Bray F.
        Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA. Cancer J Clin. 2021; https://doi.org/10.3322/caac.21660
        • Benson A.B.
        • Venook A.P.
        • Al-Hawary M.M.
        • Arain M.A.
        • Chen Y.-.J.
        • Ciombor K.K.
        • Cohen S.
        • Cooper H.S.
        • Deming D.
        • Farkas L.
        • et al.
        Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology.
        J Natl Compr Cancer Netw JNCCN. 2021; 19: 329-359https://doi.org/10.6004/jnccn.2021.0012
        • Yoshino T.
        • Arnold D.
        • Taniguchi H.
        • Pentheroudakis G.
        • Yamazaki K.
        • Xu R.-.H.
        • Kim T.W.
        • Ismail F.
        • Tan I.B.
        • Yeh K.-.H.
        • et al.
        Pan-asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS.
        Ann Oncol Off J Eur Soc Med Oncol. 2018; 29: 44-70https://doi.org/10.1093/annonc/mdx738
        • André T.
        • Shiu K.-.K.
        • Kim T.W.
        • Jensen B.V.
        • Jensen L.H.
        • Punt C.
        • Smith D.
        • Garcia-Carbonero R.
        • Benavides M.
        • Gibbs P.
        • et al.
        Pembrolizumab in microsatellite-instability-high advanced colorectal cancer.
        N Engl J Med. 2020; 383: 2207-2218https://doi.org/10.1056/NEJMoa2017699
        • Sartore-Bianchi A.
        • Pietrantonio F.
        • Lonardi S.
        et al. Phase II study of Anti-EGFR rechallenge therapy with panitumumab driven by circulating Tumor DNA molecular selection in metastatic colorectal cancer: the CHRONOS Trial.
        J Clin Oncol. 2021; 39 (3506–3506)https://doi.org/10.1200/JCO.2021.39.15_suppl.3506
        • Kopetz S.
        • Grothey A.
        • Yaeger R.
        • Van Cutsem E.
        • Desai J.
        • Yoshino T.
        • Wasan H.
        • Ciardiello F.
        • Loupakis F.
        • Hong Y.S.
        • et al.
        Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-mutated colorectal cancer.
        N Engl J Med. 2019; 381: 1632-1643https://doi.org/10.1056/NEJMoa1908075
        • Meric-Bernstam F.
        • Hurwitz H.
        • Raghav K.P.S.
        • McWilliams R.R.
        • Fakih M.
        • VanderWalde A.
        • Swanton C.
        • Kurzrock R.
        • Burris H.
        • Sweeney C.
        • et al.
        Pertuzumab plus trastuzumab for HER2-Amplified Metastatic Colorectal cancer (MyPathway): an updated report from a Multicentre, Open-Label, Phase 2a, multiple basket study.
        Lancet Oncol. 2019; 20: 518-530https://doi.org/10.1016/S1470-2045(18)30904-5
        • Siena S.
        • Marsoni S.
        • Sartore-Bianchi A.
        Breaking barriers in HER2+ cancers.
        Cancer Cell. 2020; 38: 317-319https://doi.org/10.1016/j.ccell.2020.07.012
        • Strickler J.H.
        • Ng K.
        • Cercek A.
        • Fountzilas C.
        • Sanchez F.A.
        • Hubbard J.M.
        • Wu C.
        • Siena S.
        • Tabernero J.
        • Van Cutsem E.
        • et al.
        MOUNTAINEER:open-Label, Phase II Study of Tucatinib Combined with Trastuzumab for HER2-Positive Metastatic Colorectal Cancer (SGNTUC-017, Trial in Progress).
        J Clin Oncol. 2021; 39 (TPS153–TPS153)https://doi.org/10.1200/JCO.2021.39.3_suppl.TPS153
        • Tosi F.
        • Sartore-Bianchi A.
        • Lonardi S.
        • Amatu A.
        • Leone F.
        • Ghezzi S.
        • Martino C.
        • Bencardino K.
        • Bonazzina E.
        • Bergamo F.
        • et al.
        Long-Term clinical outcome of trastuzumab and lapatinib for her2-positive metastatic colorectal cancer.
        clin colorectal Cancer. 2020; 19 (256-262.e2)https://doi.org/10.1016/j.clcc.2020.06.009
        • Ganesh K.
        • Stadler Z.K.
        • Cercek A.
        • Mendelsohn R.B.
        • Shia J.
        • Segal N.H.
        • Diaz L.A.
        Immunotherapy in colorectal cancer: rationale, challenges and potential.
        Nat Rev Gastroenterol Hepatol. 2019; 16: 361-375https://doi.org/10.1038/s41575-019-0126-x
        • Koopman M.
        • Kortman G.a.M.
        • Mekenkamp L.
        • Ligtenberg M.J.L.
        • Hoogerbrugge N.
        • Antonini N.F.
        • Punt C.J.A.
        • van Krieken J.H.J.M.
        Deficient mismatch repair system in patients with sporadic advanced colorectal cancer.
        Br J Cancer. 2009; 100: 266-273https://doi.org/10.1038/sj.bjc.6604867
        • Muzny D.M.
        • Bainbridge M.N.
        • Chang K.
        • Dinh H.H.
        • Drummond J.A.
        • Fowler G.
        • Kovar C.L.
        • Lewis L.R.
        • Morgan M.B.
        • Newsham I.F.
        • et al.
        Comprehensive molecular characterization of human colon and rectal cancer.
        Nature. 2012; 487: 330-337https://doi.org/10.1038/nature11252
        • Rospo G.
        • Lorenzato A.
        • Amirouchene-Angelozzi N.
        • Magrì A.
        • Cancelliere C.
        • Corti G.
        • Negrino C.
        • Amodio V.
        • Montone M.
        • Bartolini A.
        • et al.
        Evolving neoantigen profiles in colorectal cancers with DNA repair defects.
        Genome Med. 2019; 11: 42https://doi.org/10.1186/s13073-019-0654-6
        • Llosa N.J.
        • Cruise M.
        • Tam A.
        • Wicks E.C.
        • Hechenbleikner E.M.
        • Taube J.M.
        • Blosser R.L.
        • Fan H.
        • Wang H.
        • Luber B.S.
        • et al.
        The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints.
        Cancer Discov. 2015; 5: 43-51https://doi.org/10.1158/2159-8290.CD-14-0863
        • Gryfe R.
        • Kim H.
        • Hsieh E.T.
        • Aronson M.D.
        • Holowaty E.J.
        • Bull S.B.
        • Redston M.
        • Gallinger S.
        Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer.
        N Engl J Med. 2000; 342: 69-77https://doi.org/10.1056/NEJM200001133420201
        • Research, C. for D.E. and FDA
        Approves pembrolizumab for first-line treatment of MSI-H/DMMR colorectal cancer.
        FDA. 2020;
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • Bartlett B.R.
        • Kemberling H.
        • Eyring A.D.
        • Skora A.D.
        • Luber B.S.
        • Azad N.S.
        • Laheru D.
        • et al.
        PD-1 blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015; 372: 2509-2520https://doi.org/10.1056/NEJMoa1500596
        • Le D.T.
        • Durham J.N.
        • Smith K.N.
        • Wang H.
        • Bartlett B.R.
        • Aulakh L.K.
        • Lu S.
        • Kemberling H.
        • Wilt C.
        • Luber B.S.
        • et al.
        Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
        Science. 2017; 357: 409-413https://doi.org/10.1126/science.aan6733
      1. Sidney Kimmel comprehensive cancer center at johns Hopkins Phase 2 Study of MK-3475 in Patients With Microsatellite Unstable (MSI) Tumors; Clinicaltrials.gov, 2020;

        • O'Neil B.H.
        • Wallmark J.M.
        • Lorente D.
        • Elez E.
        • Raimbourg J.
        • Gomez-Roca C.
        • Ejadi S.
        • Piha-Paul S.A.
        • Stein M.N.
        • Abdul Razak A.R.
        • et al.
        Safety and antitumor activity of the Anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma.
        PLoS One. 2017; 12e0189848https://doi.org/10.1371/journal.pone.0189848
        • Research, C. for D.E. and FDA
        Grants accelerated approval to pembrolizumab for first tissue/site agnostic indication.
        FDA. 2019;
        • Marcus L.
        • Lemery S.J.
        • Keegan P.
        • Pazdur R.
        FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors.
        Clin Cancer Res Off JAm Assoc Cancer Res. 2019; 25: 3753-3758https://doi.org/10.1158/1078-0432.CCR-18-4070
        • Marabelle A.
        • Le D.T.
        • Ascierto P.A.
        • Di Giacomo A.M.
        • De Jesus-Acosta A.
        • Delord J.-.P.
        • Geva R.
        • Gottfried M.
        • Penel N.
        • Hansen A.R.
        • et al.
        Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study.
        J Clin Oncol Off J Am Soc Clin Oncol. 2020; 38: 1-10https://doi.org/10.1200/JCO.19.02105
        • Pestana R.C.
        • Sen S.
        • Hobbs B.P.
        • Hong D.S.
        Histology-AGNOSTIC DRUG DEVELopment - considering Issues beyond the Tissue.
        Nat Rev Clin Oncol. 2020; 17: 555-568https://doi.org/10.1038/s41571-020-0384-0
      2. Laken, H. Identification and characterization of TSR-042, a NOVEL ANTI-HUMan PD-1 Therapeutic antibody.

      3. Tesaro, Inc.A Phase 1 Dose Escalation and Cohort Expansion Study of TSR-042, an Anti-PD-1 Monoclonal Antibody, in Patients With Advanced Solid Tumors; clinicaltrials.gov, 2021;

      4. Commissioner, O. of the FDA Approves immunotherapy for endometrial cancer with specific biomarker Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-immunotherapy-endometrial-cancer-specific-biomarker (accessed on 22 August 2021).

      5. Research, C. for D.E. and FDA Grants accelerated approval to Dostarlimab-Gxly for DMMR advanced solid tumors. 2021.

      6. Safety and Efficacy of Anti–PD-1 Antibody Dostarlimab in patients (Pts) with Mismatch Repair-Deficient (DMMR) solid cancers: results from GARNET study.
        J Clin Oncol. 2021; (Available online:) (accessed on 22 August)
        • Chen J.
        • Li S.
        • Yao Q.
        • Du N.
        • Fu X.
        • Lou Y.
        • Wang M.
        • Mao F.
        • Mao D.
        • Khadaroo P.A.
        • et al.
        The EFFICACY AND SAFETY OF COMBINED IMMUNE CHECKPOINT INhibitors (Nivolumab plus Ipilimumab): a systematic review and meta-analysis.
        World J Surg Oncol. 2020; 18: 150https://doi.org/10.1186/s12957-020-01933-5
        • Overman M.J.
        • McDermott R.
        • Leach J.L.
        • Lonardi S.
        • Lenz H.-.J.
        • Morse M.A.
        • Desai J.
        • Hill A.
        • Axelson M.
        • Moss R.A.
        • et al.
        Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an Open-Label, Multicentre, Phase 2 study.
        Lancet Oncol. 2017; 18: 1182-1191https://doi.org/10.1016/S1470-2045(17)30422-9
        • Overman M.J.
        • Lonardi S.
        • Wong K.Y.M.
        • Lenz H.-.J.
        • Gelsomino F.
        • Aglietta M.
        • Morse M.A.
        • Van Cutsem E.
        • McDermott R.
        • Hill A.
        • et al.
        Durable clinical benefit with nivolumab plus ipilimumab in DNA Mismatch repair–deficient/microsatellite instability–high metastatic colorectal cancer.
        J Clin Oncol. 2018; 36: 773-779https://doi.org/10.1200/JCO.2017.76.9901
      7. Research, C. for D.E. and FDA Grants nivolumab accelerated approval for MSI-H or DMMR Colorectal Cancer. 2019.

      8. Research, C. for D.E. and FDA Grants accelerated approval to ipilimumab for MSI-H or DMMR metastatic colorectal cancer. 2019.

        • Lenz H.-.J.
        • Cutsem E.V.
        • Limon M.L.
        • Wong K.Y.M.
        • Hendlisz A.
        • Aglietta M.
        • García-Alfonso P.
        • Neyns B.
        • Luppi G.
        • Cardin D.B.
        • et al.
        First-Line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the Phase II CheckMate 142 study.
        J Clin Oncol. 2021; https://doi.org/10.1200/JCO.21.01015
        • Fancello L.
        • Gandini S.
        • Pelicci P.G.
        • Mazzarella L.
        Tumor mutational burden quantification from targeted gene panels: major advancements and challenges.
        J Immunother Cancer. 2019; 7: 183https://doi.org/10.1186/s40425-019-0647-4
        • McGranahan N.
        • Furness A.J.S.
        • Rosenthal R.
        • Ramskov S.
        • Lyngaa R.
        • Saini S.K.
        • Jamal-Hanjani M.
        • Wilson G.A.
        • Birkbak N.J.
        • Hiley C.T.
        • et al.
        Clonal Neoantigens Elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.
        Science. 2016; 351: 1463-1469https://doi.org/10.1126/science.aaf1490
        • Samstein R.M.
        • Lee C.-.H.
        • Shoushtari A.N.
        • Hellmann M.D.
        • Shen R.
        • Janjigian Y.Y.
        • Barron D.A.
        • Zehir A.
        • Jordan E.J.
        • Omuro A.
        • et al.
        Tumor mutational load predicts survival after immunotherapy across multiple cancer types.
        Nat Genet. 2019; 51: 202-206https://doi.org/10.1038/s41588-018-0312-8
        • Van Allen E.M.
        • Miao D.
        • Schilling B.
        • Shukla S.A.
        • Blank C.
        • Zimmer L.
        • Sucker A.
        • Hillen U.
        • Foppen M.H.G.
        • Goldinger S.M.
        • et al.
        Genomic correlates of response to CTLA-4 blockade in metastatic melanoma.
        Science. 2015; 350: 207-211https://doi.org/10.1126/science.aad0095
        • Herbst R.S.
        • Lopes G.
        • Kowalski D.M.
        • Nishio M.
        • Wu Y.-.L.
        • de Castro Junior G.
        • Baas P.
        • Kim D.-.W.
        • Gubens M.A.
        • Cristescu R.
        • et al.
        LBA79 - Association between Tissue TMB (TTMB) and Clinical Outcomes with Pembrolizumab Monotherapy (Pembro) in PD-L1-positive advanced NSCLC in the KEYNOTE-010 and -042 Trials.
        Ann Oncol. 2019; 30: v916-v917https://doi.org/10.1093/annonc/mdz394.077
      9. Research, C. for D.E. and FDA Approves pembrolizumab for adults and children with TMB-H Solid Tumors. 2020.

        • Schrock A.B.
        • Ouyang C.
        • Sandhu J.
        • Sokol E.
        • Jin D.
        • Ross J.S.
        • Miller V.A.
        • Lim D.
        • Amanam I.
        • Chao J.
        • et al.
        Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer.
        Ann Oncol Off J Eur Soc Med Oncol. 2019; 30: 1096-1103https://doi.org/10.1093/annonc/mdz134
        • Xiao J.
        • Li W.
        • Huang Y.
        • Huang M.
        • Li S.
        • Zhai X.
        • Zhao J.
        • Gao C.
        • Xie W.
        • Qin H.
        • et al.
        A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer.
        BMC Cancer. 2021; 21: 282https://doi.org/10.1186/s12885-021-07942-1
        • Goodman A.M.
        • Sokol E.S.
        • Frampton G.M.
        • Lippman S.M.
        • Kurzrock R.
        Microsatellite-stable tumors with high mutational burden benefit from immunotherapy.
        Cancer Immunol. Res. 2019; 7: 1570-1573https://doi.org/10.1158/2326-6066.CIR-19-0149
        • Rousseau B.
        • Foote M.B.
        • Maron S.B.
        • Diplas B.H.
        • Lu S.
        • Argilés G.
        • Cercek A.
        • Diaz L.A.
        The spectrum of benefit from checkpoint blockade in hypermutated tumors.
        N Engl J Med. 2021; 384: 1168-1170https://doi.org/10.1056/NEJMc2031965
        • Germano G.
        • Lamba S.
        • Rospo G.
        • Barault L.
        • Magrì A.
        • Maione F.
        • Russo M.
        • Crisafulli G.
        • Bartolini A.
        • Lerda G.
        • et al.
        Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth.
        Nature. 2017; 552: 116-120https://doi.org/10.1038/nature24673
        • Crisafulli G.
        • Sartore-Bianchi A.
        • Lazzari L.
        et al. Temozolomide treatment alters mismatch repair and boosts mutational burden in tumor and blood of colorectal cancer patients.
        Cancer Discov. 2022; (candisc.1434.2021)https://doi.org/10.1158/2159-8290.CD-21-1434
        • Morano F.
        • Raimondi A.
        • Pagani F.
        • Lonardi S.
        • Salvatore L.
        • Cremolini C.
        • Murgioni S.
        • Randon G.
        • Palermo F.
        • Antonuzzo L.
        • et al.
        Temozolomide followed by combination with low-dose ipilimumab and nivolumab in patients with microsatellite-stable, O6-Methylguanine-DNA Methyltransferase-Silenced Metastatic Colorectal Cancer: the MAYA Trial.
        J Clin Oncol Off J Am Soc Clin Oncol. 2022; JCO2102583https://doi.org/10.1200/JCO.21.02583
        • Nakagawara A.
        • Liu X.-.G.
        • Ikegaki N.
        • White P.S.
        • Yamashiro D.J.
        • Nycum L.M.
        • Biegel J.A.
        • Brodeur G.M.
        Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2).
        Genomics. 1995; 25: 538-546https://doi.org/10.1016/0888-7543(95)80055-Q
        • Amatu A.
        • Sartore-Bianchi A.
        • Bencardino K.
        • Pizzutilo E.G.
        • Tosi F.
        • Siena S.
        Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer.
        Ann Oncol. 2019; 30: viii5-viii15https://doi.org/10.1093/annonc/mdz383
        • Mauri G.
        • Valtorta E.
        • Cerea G.
        • Amatu A.
        • Schirru M.
        • Marrapese G.
        • Fiorillo V.
        • Recchimuzzo P.
        • Cavenago I.S.
        • Bonazzina E.F.
        • et al.
        TRKA expression and NTRK1 gene copy number across solid tumours.
        J Clin Pathol. 2018; 71: 926-931https://doi.org/10.1136/jclinpath-2018-205124
        • Tomasson M.H.
        • Xiang Z.
        • Walgren R.
        • Zhao Y.
        • Kasai Y.
        • Miner T.
        • Ries R.E.
        • Lubman O.
        • Fremont D.H.
        • McLellan M.D.
        • et al.
        Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia.
        Blood. 2008; 111: 4797-4808https://doi.org/10.1182/blood-2007-09-113027
        • Tacconelli A.
        • Farina A.R.
        • Cappabianca L.
        • DeSantis G.
        • Tessitore A.
        • Vetuschi A.
        • Sferra R.
        • Rucci N.
        • Argenti B.
        • Screpanti I.
        • et al.
        TrkA Alternative Splicing: a regulated tumor-promoting switch in human neuroblastoma.
        Cancer Cell. 2004; 6: 347-360https://doi.org/10.1016/j.ccr.2004.09.011
        • Amatu A.
        • Sartore-Bianchi A.
        • Siena S.
        NTRK gene fusions as novel targets of cancer therapy across multiple tumour types.
        ESMO Open. 2016; 1e000023https://doi.org/10.1136/esmoopen-2015-000023
        • Créancier L.
        • Vandenberghe I.
        • Gomes B.
        • Dejean C.
        • Blanchet J.-.C.
        • Meilleroux J.
        • Guimbaud R.
        • Selves J.
        • Kruczynski A.
        Chromosomal rearrangements involving the NTRK1 gene in colorectal carcinoma.
        Cancer Lett. 2015; 365: 107-111https://doi.org/10.1016/j.canlet.2015.05.013
        • Guo Y.
        • Guo X.-.L.
        • Wang S.
        • Chen X.
        • Shi J.
        • Wang J.
        • Wang K.
        • Klempner S.J.
        • Wang W.
        • Xiao M.
        Genomic alterations of NTRK, POLE, ERBB2, and microsatellite instability status in chinese patients with colorectal cancer.
        Oncologist. 2020; 25: e1671-e1680https://doi.org/10.1634/theoncologist.2020-0356
      10. Research, C. for D.E. and FDA Approves larotrectinib for solid tumors with NTRK gene fusions. 2019.

        • Hong D.S.
        • Bauer T.M.
        • Lee J.J.
        • Dowlati A.
        • Brose M.S.
        • Farago A.F.
        • Taylor M.
        • Shaw A.T.
        • Montez S.
        • Meric-Bernstam F.
        • et al.
        Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase i dose-escalation study.
        Ann Oncol Off J Eur Soc Med Oncol. 2019; 30: 325-331https://doi.org/10.1093/annonc/mdy539
        • Laetsch T.W.
        • DuBois S.G.
        • Mascarenhas L.
        • Turpin B.
        • Federman N.
        • Albert C.M.
        • Nagasubramanian R.
        • Davis J.L.
        • Rudzinski E.
        • Feraco A.M.
        • et al.
        Larotrectinib for Paediatric Solid Tumours Harbouring NTRK Gene Fusions: phase 1 Results from a Multicentre, Open-Label, Phase 1/2 Study.
        Lancet Oncol. 2018; 19: 705-714https://doi.org/10.1016/S1470-2045(18)30119-0
        • Hong D.S.
        • DuBois S.G.
        • Kummar S.
        • Farago A.F.
        • Albert C.M.
        • Rohrberg K.S.
        • van Tilburg C.M.
        • Nagasubramanian R.
        • Berlin J.D.
        • Federman N.
        • et al.
        Larotrectinib in Patients with TRK Fusion-Positive Solid Tumours: a Pooled analysis of three phase 1/2 clinical trials.
        Lancet Oncol. 2020; 21: 531-540https://doi.org/10.1016/S1470-2045(19)30856-3
        • McDermott R.
        • Tilburg C.M.
        • van; Farago A.F.
        • Kummar S.
        • Tan D.S.W.
        • Albert C.M.
        • Berlin J.
        • Lassen U.N.
        • Doz F.
        • Geoerger B.
        • et al.
        1955P survival benefits of Larotrectinib in an integrated dataset of patients with TRK fusion cancer.
        Ann Oncol. 2020; 31: S1101-S1102https://doi.org/10.1016/j.annonc.2020.08.1347
        • Boni V.
        • Drilon A.
        • Deeken J.
        • Garralda E.
        • Chung H.
        • Kinoshita I.
        • Oh D.
        • Patel J.
        • Xu R.
        • Norenberg R.
        • et al.
        SO-29 efficacy and safety of larotrectinib in patients with tropomyosin receptor kinase fusion-positive gastrointestinal cancer: an expanded dataset.
        Ann Oncol. 2021; 32: S214-S215https://doi.org/10.1016/j.annonc.2021.05.053
        • Berlin J.
        • Hong D.S.
        • Deeken J.F.
        • Boni V.
        • Oh D.-.Y.
        • Patel J.D.
        • Nanda S.
        • Brega N.
        • Childs B.H.
        • Hyman D.M.
        • et al.
        Efficacy and safety of Larotrectinib in Patients with TRK fusion gastrointestinal cancer.
        J Clin Oncol. 2020; 38 (824–824)https://doi.org/10.1200/JCO.2020.38.4_suppl.824
        • Drilon A.
        • Siena S.
        • Ou S.-H.I.
        • Patel M.
        • Ahn M.J.
        • Lee J.
        • Bauer T.M.
        • Farago A.F.
        • Wheler J.J.
        • Liu S.V.
        • et al.
        Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: combined results from two Phase I Trials (ALKA-372-001 and STARTRK-1).
        Cancer Discov. 2017; 7: 400-409https://doi.org/10.1158/2159-8290.CD-16-1237
        • Patel M.
        • Siena S.
        • Demetri G.
        • Doebele R.
        • Chae Y.
        • Conkling P.
        • Garrido-Laguna I.
        • Longo F.
        • Rolfo C.
        • Sigal D.
        • et al.
        O-3 Efficacy and Safety of Entrectinib in NTRK Fusion-Positive Gastrointestinal Cancers: updated integrated analysis of three clinical trials (STARTRK-2, STARTRK-1 and ALKA-372-001).
        Ann Oncol. 2020; 31: 232-233https://doi.org/10.1016/j.annonc.2020.04.056
        • Davies H.
        • Bignell G.R.
        • Cox C.
        • Stephens P.
        • Edkins S.
        • Clegg S.
        • Teague J.
        • Woffendin H.
        • Garnett M.J.
        • Bottomley W.
        • et al.
        Mutations of the BRAF gene in human cancer.
        Nature. 2002; 417: 949-954https://doi.org/10.1038/nature00766
        • Seligmann J.F.
        • Fisher D.
        • Smith C.G.
        • Richman S.D.
        • Elliott F.
        • Brown S.
        • Adams R.
        • Maughan T.
        • Quirke P.
        • Cheadle J.
        • et al.
        Investigating the POOR outcomes OfBRAF-mutant advanced colorectal cancer: analysis from 2530 patients in randomised clinical trials.
        ann oncol. 2017; 28: 562-568https://doi.org/10.1093/annonc/mdw645
        • Di Nicolantonio F.
        • Martini M.
        • Molinari F.
        • Sartore-Bianchi A.
        • Arena S.
        • Saletti P.
        • De Dosso S.
        • Mazzucchelli L.
        • Frattini M.
        • Siena S.
        • et al.
        Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer.
        J Clin Oncol. 2008; 26: 5705-5712https://doi.org/10.1200/JCO.2008.18.0786
        • Taieb J.
        • Lapeyre-Prost A.
        • Laurent Puig P.
        • Zaanan A.
        Exploring the best treatment options for BRAF-mutant metastatic colon cancer.
        Br J Cancer. 2019; 121: 434-442https://doi.org/10.1038/s41416-019-0526-2
        • Capper D.
        • Voigt A.
        • Bozukova G.
        • Ahadova A.
        • Kickingereder P.
        • von Deimling A.
        • von Knebel Doeberitz M.
        • Kloor M.
        BRAF V600E-Specific Immunohistochemistry for the exclusion of lynch syndrome in MSI-H colorectal cancer.
        Int J Cancer. 2013; 133: 1624-1630https://doi.org/10.1002/ijc.28183
        • Parsons M.T.
        • Buchanan D.D.
        • Thompson B.
        • Young J.P.
        • Spurdle A.B.
        Correlation of Tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for mmr variant classification.
        J Med Genet. 2012; 49: 151-157https://doi.org/10.1136/jmedgenet-2011-100714
        • Long G.V.
        • Stroyakovskiy D.
        • Gogas H.
        • Levchenko E.
        • de Braud F.
        • Larkin J.
        • Garbe C.
        • Jouary T.
        • Hauschild A.
        • Grob J.-.J.
        • et al.
        Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-Mutant melanoma: a Multicentre, double-blind, Phase 3 randomised controlled trial.
        The Lancet. 2015; 386: 444-451https://doi.org/10.1016/S0140-6736(15)60898-4
        • Robert C.
        • Karaszewska B.
        • Schachter J.
        • Rutkowski P.
        • Mackiewicz A.
        • Stroiakovski D.
        • Lichinitser M.
        • Dummer R.
        • Grange F.
        • Mortier L.
        • et al.
        Improved overall survival in melanoma with combined dabrafenib and trametinib.
        N Engl J Med. 2015; 372: 30-39https://doi.org/10.1056/NEJMoa1412690
        • Ascierto P.A.
        • McArthur G.A.
        • Dréno B.
        • Atkinson V.
        • Liszkay G.
        • Giacomo A.M.D.
        • Mandalà M.
        • Demidov L.
        • Stroyakovskiy D.
        • Thomas L.
        • et al.
        Cobimetinib Combined with Vemurafenib in Advanced BRAFV600-Mutant Melanoma (CoBRIM): updated Efficacy Results from a Randomised, Double-Blind, Phase 3 Trial.
        Lancet Oncol. 2016; 17: 1248-1260https://doi.org/10.1016/S1470-2045(16)30122-X
        • Planchard D.
        • Smit E.F.
        • Groen H.J.M.
        • Mazieres J.
        • Besse B.
        • Helland Å.
        • Giannone V.
        • D'Amelio A.M.
        • Zhang P.
        • Mookerjee B.
        • et al.
        Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an Open-Label, Phase 2 Trial.
        Lancet Oncol. 2017; 18: 1307-1316https://doi.org/10.1016/S1470-2045(17)30679-4
        • Subbiah V.
        • Kreitman R.J.
        • Wainberg Z.A.
        • Cho J.Y.
        • Schellens J.H.M.
        • Soria J.C.
        • Wen P.Y.
        • Zielinski C.
        • Cabanillas M.E.
        • Urbanowitz G.
        • et al.
        Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600–mutant anaplastic thyroid cancer.
        J Clin Oncol. 2018; 36: 7-13https://doi.org/10.1200/JCO.2017.73.6785
        • Prahallad A.
        • Sun C.
        • Huang S.
        • Di Nicolantonio F.
        • Salazar R.
        • Zecchin D.
        • Beijersbergen R.L.
        • Bardelli A.
        • Bernards R.
        Unresponsiveness of Colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR.
        Nature. 2012; 483: 100-103https://doi.org/10.1038/nature10868
      11. NCCN Clinical practice guidelines in oncology (NCCN Guidelines®). Colon cancer. Version 3. 2021.

        • Loupakis F.
        • Cremolini C.
        • Masi G.
        • Lonardi S.
        • Zagonel V.
        • Salvatore L.
        • Cortesi E.
        • Tomasello G.
        • Ronzoni M.
        • Spadi R.
        • et al.
        Initial Therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer.
        N Engl J Med. 2014; 371: 1609-1618https://doi.org/10.1056/NEJMoa1403108
        • Kopetz S.
        • Desai J.
        • Chan E.
        • Hecht J.R.
        • O'Dwyer P.J.
        • Maru D.
        • Morris V.
        • Janku F.
        • Dasari A.
        • Chung W.
        • et al.
        Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer.
        J Clin Oncol. 2015; 33: 4032-4038https://doi.org/10.1200/JCO.2015.63.2497
        • Gomez-Roca C.A.
        • Delord J.
        • Robert C.
        • Hidalgo M.
        • von Moos R.
        • Arance A.
        • Elez E.
        • Michel D.
        • Seroutou A.
        • Demuth T.
        • et al.
        535P - Encorafenib (Lgx818), an Oral Braf Inhibitor, in Patients (Pts) with Braf V600E Metastatic Colorectal Cancer (Mcrc): results of Dose Expansion in an Open-Label, Phase 1 Study.
        Ann Oncol. 2014; 25: iv182https://doi.org/10.1093/annonc/mdu333.38
        • Corcoran R.B.
        • Atreya C.E.
        • Falchook G.S.
        • Kwak E.L.
        • Ryan D.P.
        • Bendell J.C.
        • Hamid O.
        • Messersmith W.A.
        • Daud A.
        • Kurzrock R.
        • et al.
        Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600–mutant colorectal cancer.
        J Clin Oncol. 2015; 33: 4023-4031https://doi.org/10.1200/JCO.2015.63.2471
        • Corcoran R.B.
        • Ebi H.
        • Turke A.B.
        • Coffee E.M.
        • Nishino M.
        • Cogdill A.P.
        • Brown R.D.
        • Pelle P.D.
        • Dias-Santagata D.
        • Hung K.E.
        • et al.
        EGFR-Mediated Re-Activation of MAPK signaling Contributes TO insensitivity of BRAF mutant colorectal cancers to raf inhibition with vemurafenib.
        Cancer Discov. 2012; 2: 227-235https://doi.org/10.1158/2159-8290.CD-11-0341
        • Tabernero J.
        • Grothey A.
        • Van Cutsem E.
        • Yaeger R.
        • Wasan H.
        • Yoshino T.
        • Desai J.
        • Ciardiello F.
        • Loupakis F.
        • Hong Y.S.
        • et al.
        Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E–mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study.
        J Clin Oncol. 2021; 39: 273-284https://doi.org/10.1200/JCO.20.02088
        • Research, C. for D.E. and FDA
        Approves encorafenib in combination with cetuximab for metastatic colorectal cancer with a BRAF V600E mutation.
        FDA. 2020;
      12. Braftovi (Encorafenib) Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/braftovi (accessed on 4 January 2022).

        • Grothey A.
        • Tabernero J.
        • Taieb J.
        • Yaeger R.
        • Yoshino T.
        • Maiello E.
        • Fernandez E.E.
        • Casado A.R.
        • Ross P.
        • André T.
        • et al.
        LBA-5 ANCHOR CRC: a Single-Arm, Phase 2 Study of Encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E-mutant metastatic colorectal Cancer.
        Ann Oncol. 2020; 31: S242-S243https://doi.org/10.1016/j.annonc.2020.04.080
        • Van Geel R.M.J.M.
        • Tabernero J.
        • Elez E.
        • Bendell J.C.
        • Spreafico A.
        • Schuler M.
        • Yoshino T.
        • Delord J.-.P.
        • Yamada Y.
        • Lolkema M.P.
        • et al.
        A Phase Ib dose-escalation study of encorafenib and cetuximab with or without Alpelisib in metastatic BRAF-mutant colorectal cancer.
        Cancer Discov. 2017; 7: 610-619https://doi.org/10.1158/2159-8290.CD-16-0795
        • Corcoran R.
        • Giannakis M.
        • Allen J.
        • Chen J.
        • Pelka K.
        • Chao S.
        • Meyerhardt J.
        • Enzinger A.
        • Enzinger P.
        • McCleary N.
        • et al.
        SO-26 clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAFV600E colorectal Cancer patients.
        Ann Oncol. 2020; 31: S226-S227https://doi.org/10.1016/j.annonc.2020.04.041
        • Takegawa N.
        • Yonesaka K.
        HER2 as an emerging oncotarget for colorectal cancer treatment after failure of anti-epidermal growth factor receptor therapy.
        Clin Colorectal Cancer. 2017; 16: 247-251https://doi.org/10.1016/j.clcc.2017.03.001
        • Chmielecki J.
        • Ross J.S.
        • Wang K.
        al oncogenic alterations in ERBB2/HER2 represent potential therapeutic targets across tumors from diverse anatomic sites of origin.
        Oncologist. 2015; 20: 7-12https://doi.org/10.1634/theoncologist.2014-0234
      13. What Is Herceptin® (Trastuzumab) for HER2+ Cancer? Available online: https://www.herceptin.com/patient/about-herceptin.html (accessed on 16 August 2021).

        • Siena S.
        • Sartore-Bianchi A.
        • Marsoni S.
        • Hurwitz H.I.
        • McCall S.J.
        • Penault-Llorca F.
        • Srock S.
        • Bardelli A.
        • Trusolino L.
        Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer.
        Ann Oncol. 2018; 29: 1108-1119https://doi.org/10.1093/annonc/mdy100
        • Ross J.S.
        • Fakih M.
        • Ali S.M.
        • Elvin J.A.
        • Schrock A.B.
        • Suh J.
        • Vergilio J.
        • Ramkissoon S.
        • Severson E.
        • Daniel S.
        • et al.
        Targeting HER2 in colorectal cancer: the landscape of amplification and short variant mutations in ERBB2 and ERBB3.
        Cancer. 2018; 124: 1358-1373https://doi.org/10.1002/cncr.31125
        • Meric-Bernstam F.
        • Hurwitz H.
        • Raghav K.P.S.
        • McWilliams R.R.
        • Fakih M.
        • VanderWalde A.
        • Swanton C.
        • Kurzrock R.
        • Burris H.
        • Sweeney C.
        • et al.
        Pertuzumab plus trastuzumab for HER2-Amplified Metastatic Colorectal Cancer (MyPathway): an updated report from a multicentre, open-label, Phase 2a, Multiple Basket Study.
        Lancet Oncol. 2019; 20: 518-530https://doi.org/10.1016/S1470-2045(18)30904-5
        • Meric-Bernstam F.
        • Hainsworth J.
        • Bose R.
        • Burris III, H.A.
        • Friedman C.F.
        • Kurzrock R.
        • Swanton C.
        • Wang Y.
        • Levy J.
        • Schulze K.;.
        • et al.
        MyPathway HER2 basket study: pertuzumab (P) + Trastuzumab (H) Treatment of a Large, Tissue-agnostic cohort of patients with her2-positive advanced solid tumors.
        J Clin Oncol. 2021; 39 (3004–3004)https://doi.org/10.1200/JCO.2021.39.15_suppl.3004
        • Siena S.
        • Di Bartolomeo M.
        • Raghav K.
        • Masuishi T.
        • Loupakis F.
        • Kawakami H.
        • Yamaguchi K.
        • Nishina T.
        • Fakih M.
        • Elez E.
        • et al.
        Trastuzumab deruxtecan (DS-8201) in Patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-Label, Phase 2 Trial.
        Lancet Oncol. 2021; 22: 779-789https://doi.org/10.1016/S1470-2045(21)00086-3
        • Strickler J.H.
        • Ng K.
        • Cercek A.
        • Fountzilas C.
        • Sanchez F.A.
        • Hubbard J.M.
        • Wu C.
        • Siena S.
        • Tabernero J.
        • Van Cutsem E.
        • et al.
        MOUNTAINEER:open-Label, Phase II Study of Tucatinib Combined with Trastuzumab for HER2-Positive Metastatic Colorectal Cancer (SGNTUC-017, Trial in Progress).
        J Clin Oncol. 2021; 39 (TPS153–TPS153)https://doi.org/10.1200/JCO.2021.39.3_suppl.TPS153
        • Nakamura Y.
        • Okamoto W.
        • Kato T.
        • Hasegawa H.
        • Kato K.
        • Iwasa S.
        • Esaki T.
        • Komatsu Y.
        • Masuishi T.
        • Nishina T.
        • et al.
        TRIUMPH: primary efficacy of a phase II Trial of Trastuzumab (T) and pertuzumab (P) in patients (Pts) with metastatic colorectal cancer (MCRC) with HER2 (ERBB2) Amplification (Amp) in tumour tissue or circulating tumour DNA (CtDNA): a GOZILA Sub-Study.
        Ann Oncol. 2019; https://doi.org/10.1093/annonc/mdz246.004
        • Gupta R.
        • Garrett-Mayer E.
        • Halabi S.
        • Mangat P.K.
        • D'Andre S.D.
        • Meiri E.
        • Shrestha S.
        • Warren S.L.
        • Ranasinghe S.
        • Schilsky R.L.
        Pertuzumab plus Trastuzumab (P+T) in Patients (Pts) with Colorectal Cancer (CRC) with ERBB2 amplification or overexpression: results from the TAPUR study.
        J Clin Oncol. 2020; 38 (132–132)https://doi.org/10.1200/JCO.2020.38.4_suppl.132
      14. Zymeworks Inc. Phase 2 Study of ZW25 Plus First-Line Combination Chemotherapy in HER2-Expressing Gastrointestinal (GI) Cancers, Including Gastroesophageal Adenocarcinoma (GEA), Biliary Tract Cancer (BTC), and Colorectal Cancer (CRC); clinicaltrials.gov, 2021;

      15. Zhejiang university pyrotinib maleate with or without trastuzumab in the Treatment of HER2-Positive advanced Colorectal Cancer: A Multicenter Clinical Trial.
        Second Affiliated Hospital, School of Medicine, 2021 (clinicaltrials.gov)
        • Sartore-Bianchi A.
        • Lonardi S.
        • Martino C.
        • Fenocchio E.
        • Tosi F.
        • Ghezzi S.
        • Leone F.
        • Bergamo F.
        • Zagonel V.
        • Ciardiello F.
        • et al.
        Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: the phase II HERACLES-B Trial.
        ESMO Open. 2020; 5e000911https://doi.org/10.1136/esmoopen-2020-000911
        • Banerji U.
        • van Herpen C.M.L.
        • Saura C.
        • Thistlethwaite F.
        • Lord S.
        • Moreno V.
        • Macpherson I.R.
        • Boni V.
        • Rolfo C.
        • de Vries E.G.E.
        • et al.
        Trastuzumab Duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a Phase 1 dose-escalation and dose-expansion study.
        Lancet Oncol. 2019; 20: 1124-1135https://doi.org/10.1016/S1470-2045(19)30328-6
        • Xu Y.
        • Wang Y.
        • Gong J.
        • Zhang X.
        • Peng Z.
        • Sheng X.
        • Mao C.
        • Fan Q.
        • Bai Y.
        • Ba Y.
        • et al.
        Phase I study of the recombinant humanized Anti-HER2 Monoclonal Antibody-MMAE Conjugate RC48-ADC in Patients with HER2-positive advanced solid tumors. Gastric Cancer Off.
        J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2021; 24: 913-925https://doi.org/10.1007/s10120-021-01168-7
        • Bartley A.N.
        • Washington M.K.
        • Ventura C.B.
        • Ismaila N.
        • Colasacco C.
        • Benson A.B.
        • Carrato A.
        • Gulley M.L.
        • Jain D.
        • Kakar S.
        • et al.
        HER2 Testing and Clinical Decision Making in Gastroesophageal Adenocarcinoma: guideline From the College of American Pathologists, American society for clinical pathology, and american society of clinical oncology.
        Arch Pathol Lab Med. 2016; 140: 1345-1363https://doi.org/10.5858/arpa.2016-0331-CP
        • Valtorta E.
        • Martino C.
        • Sartore-Bianchi A.
        • Penaullt-Llorca F.
        • Viale G.
        • Risio M.
        • Rugge M.
        • Grigioni W.
        • Bencardino K.
        • Lonardi S.
        • et al.
        Assessment of a HER2 scoring system for colorectal cancer: results from a validation study.
        Mod Pathol Off J US Can Acad Pathol Inc. 2015; 28: 1481-1491https://doi.org/10.1038/modpathol.2015.98
        • Tarantino P.
        • Hamilton E.
        • Tolaney S.M.
        • Cortes J.
        • Morganti S.
        • Ferraro E.
        • Marra A.
        • Viale G.
        • Trapani D.
        • Cardoso F.
        • et al.
        HER2-low breast cancer: pathological and clinical landscape.
        J Clin Oncol Off J Am Soc Clin Oncol. 2020; 38: 1951-1962https://doi.org/10.1200/JCO.19.02488
        • Patelli G.
        • Tosi F.
        • Amatu A.
        • Mauri G.
        • Curaba A.
        • Patanè D.A.
        • Pani A.
        • Scaglione F.
        • Siena S.
        • Sartore-Bianchi A.
        Strategies to tackle RAS-mutated metastatic colorectal cancer.
        ESMO Open. 2021; 6100156https://doi.org/10.1016/j.esmoop.2021.100156
        • Henry J.T.
        • Coker O.
        • Chowdhury S.
        • Shen J.P.
        • Morris V.K.
        • Dasari A.
        • Raghav K.
        • Nusrat M.
        • Kee B.
        • Parseghian C.
        • et al.
        Comprehensive clinical and molecular characterization of KRAS G12C-mutant colorectal cancer.
        JCO Precis Oncol. 2021; 5 (PO.20.00256)https://doi.org/10.1200/PO.20.00256
        • Ostrem J.M.
        • Peters U.
        • Sos M.L.
        • et al.
        K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions.
        Nature. 2013; 503: 548-551https://doi.org/10.1038/nature12796
        • Hong D.S.
        • Fakih M.G.
        • Strickler J.H.
        • Desai J.
        • Durm G.A.
        • Shapiro G.I.
        • Falchook G.S.
        • Price T.J.
        • Sacher A.
        • Denlinger C.S.
        • et al.
        KRASG12C inhibition with Sotorasib in advanced solid tumors.
        N Engl J Med. 2020; 383: 1207-1217https://doi.org/10.1056/NEJMoa1917239
        • Johnson M.L.
        • Ou S.H.I.
        • Barve M.
        • Rybkin I.I.
        • Papadopoulos K.P.
        • Leal T.A.
        • Velastegui K.
        • Christensen J.G.
        • Kheoh T.
        • Chao R.C.
        • et al.
        KRYSTAL-1: activity and Safety of Adagrasib (MRTX849) in Patients with Colorectal Cancer (CRC) and Other Solid Tumors Harboring a KRAS G12C Mutation.
        Eur J Cancer. 2020; 138: S2https://doi.org/10.1016/S0959-8049(20)31077-7
        • Fakih M.G.
        • Kopetz S.
        • Kuboki Y.
        • Kim T.W.
        • Munster P.N.
        • Krauss J.C.
        • Falchook G.S.
        • Han S.-.W.
        • Heinemann V.
        • Muro K.
        • et al.
        Sotorasib for previously treated colorectal cancers with KRASG12C Mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial.
        Lancet Oncol. 2022; 23: 115-124https://doi.org/10.1016/S1470-2045(21)00605-7
        • Weiss J.
        • Yaeger R.D.
        • Johnson M.L.
        • Spira A.
        • Klempner S.J.
        • Barve M.A.
        • Christensen J.G.
        • Chi A.
        • Der-Torossian H.
        • Velastegui K.
        • et al.
        LBA6 KRYSTAL-1: adagrasib (MRTX849) as Monotherapy or Combined with Cetuximab (Cetux) in Patients (Pts) with Colorectal Cancer (CRC) Harboring a KRASG12C Mutation.
        Ann Oncol. 2021; 32: S1294https://doi.org/10.1016/j.annonc.2021.08.2093
        • Research, C. for D.E. and FDA
        Grants accelerated approval to sotorasib for KRAS G12C mutated NSCLC.
        FDA. 2021;
      16. Mirati Therapeutics’ Adagrasib Receives Breakthrough Therapy Designation from U.S. Food and Drug Administration for Patients with Advanced Non-Small Cell Lung Cancer Harboring the KRAS G12C Mutation Available online: https://ir.mirati.com/press-releases/press-release-details/2021/Mirati-Therapeutics-Adagrasib-Receives-Breakthrough-Therapy-Designation-from-U.S.-Food-and-Drug-Administration-for-Patients-with-Advanced-Non-Small-Cell-Lung-Cancer-Harboring-the-KRAS-G12C-Mutation/default.aspx (accessed on 25 July 2021).

        • Amodio V.
        • Yaeger R.
        • Arcella P.
        • Cancelliere C.
        • Lamba S.
        • Lorenzato A.
        • Arena S.
        • Montone M.
        • Mussolin B.
        • Bian Y.
        • et al.
        EGFR blockade reverts resistance to KRASG12C inhibition in colorectal cancer.
        Cancer Discov. 2020; 10: 1129-1139https://doi.org/10.1158/2159-8290.CD-20-0187
        • Fakih M.
        • Falchook G.S.
        • Hong D.S.
        • Yaeger R.D.
        • Chan E.
        • Mather O.
        • Cardona P.
        • Dai T.
        • Strickler J.
        434P CodeBreaK 101 Subprotocol H: phase Ib Study Evaluating Combination of Sotorasib (Soto), a KRASG12C Inhibitor, and Panitumumab (PMab), an EGFR Inhibitor, in Advanced KRAS p.G12C-Mutated Colorectal Cancer (CRC).
        Ann. Oncol. 2021; 32: S551https://doi.org/10.1016/j.annonc.2021.08.955
        • Herdeis L.
        • Gerlach D.
        • McConnell D.B.
        • Kessler D.
        Stopping the beating heart of cancer: KRAS reviewed.
        Curr Opin Struct Biol. 2021; 71: 136-147https://doi.org/10.1016/j.sbi.2021.06.013
        • Drilon A.
        • Hu Z.I.
        • Lai G.G.Y.
        • Tan D.S.W.
        Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes.
        Nat Rev Clin Oncol. 2018; 15: 151-167https://doi.org/10.1038/nrclinonc.2017.175
        • Mulligan L.M.
        RET revisited: expanding the oncogenic portfolio.
        Nat Rev Cancer. 2014; 14: 173-186https://doi.org/10.1038/nrc3680
        • Pietrantonio F.
        • Di Nicolantonio F.
        • Schrock A.B.
        • Lee J.
        • Morano F.
        • Fucà G.
        • Nikolinakos P.
        • Drilon A.
        • Hechtman J.F.
        • Christiansen J.
        • et al.
        RET fusions in a small subset of advanced colorectal cancers at risk of being neglected.
        Ann Oncol Off J Eur Soc Med Oncol. 2018; 29: 1394-1401https://doi.org/10.1093/annonc/mdy090
        • Bradford D.
        • Larkins E.
        • Mushti S.L.
        • Rodriguez L.
        • Skinner A.M.
        • Helms W.S.
        • Price L.S.L.
        • Zirkelbach J.F.
        • Li Y.
        • Liu J.
        • et al.
        FDA approval summary: selpercatinib for the treatment of lung and thyroid cancers with ret gene mutations or fusions.
        Clin Cancer Res Off J Am Assoc Cancer Res. 2021; 27: 2130-2135https://doi.org/10.1158/1078-0432.CCR-20-3558
        • Research, C. for D.E. and FDA
        Approves pralsetinib for RET-altered thyroid cancers.
        FDA. 2021;
        • Research, C. for D.E. and FDA
        Approves pralsetinib for lung cancer with RET Gene Fusions.
        FDA. 2020;
        • Kato S.
        • Subbiah V.
        • Marchlik E.
        • Elkin S.K.
        • Carter J.L.
        • Kurzrock R.
        RET aberrations in diverse cancers: next-generation Sequencing of 4,871 Patients.
        Clin. Cancer Res Off J Am Assoc Cancer Res. 2017; 23: 1988-1997https://doi.org/10.1158/1078-0432.CCR-16-1679
        • Subbiah V.
        • Konda B.
        • Bauer T.
        • McCoach C.
        • Falchook G.
        • Takeda M.
        • Patel J.
        • Weiss J.
        • Peled N.
        • Bazhenova L.
        • et al.
        Abstract CT011: efficacy and safety of selpercatinib in RET Fusion-Positive cancers other than lung or thyroid cancers.
        Cancer Res. 2021; 81 (CT011–CT011)https://doi.org/10.1158/1538-7445.AM2021-CT011
      17. Expert report on novel targeted treatments from AACR Annual Meeting 2021 | OncologyPRO Available online: https://oncologypro.esmo.org/oncology-news/esmo-videos/expert-report-on-novel-targeted-treatments-from-aacr-annual-meeting-2021 (accessed on 9 August 2021).

        • Subbiah V.
        • Cassier P.A.
        • Siena S.
        • Alonso G.
        • Paz-Ares L.G.
        • Garrido P.
        • Nadal E.
        • Curigliano G.
        • Vuky J.
        • Lopes G.
        • et al.
        Clinical Activity and safety of the RET inhibitor pralsetinib in patients with RET fusion-positive solid tumors: update from the ARROW trial.
        J Clin Oncol. 2021; 39 (3079–3079)https://doi.org/10.1200/JCO.2021.39.15_suppl.3079
      18. Schram AM efficacy and safety of Zenocutuzumab in Advanced Pancreatic cancer and other solid tumors harboring NRG1 fusions available online: https://merus.nl/wp-content/uploads/2021/06/ASCO-2021-Zeno-in-NRG1-fusion.pdf (accessed on 17 August 2021).

        • Hyman D.M.
        • Piha-Paul S.A.
        • Won H.
        • Rodon J.
        • Saura C.
        • Shapiro G.I.
        • Juric D.
        • Quinn D.I.
        • Moreno V.
        • Doger B.
        • et al.
        HER Kinase inhibition in patients with HER2- and HER3-mutant cancers.
        Nature. 2018; 554: 189-194https://doi.org/10.1038/nature25475
        • Fernandez-Cuesta L.
        • Thomas R.K.
        Molecular pathways: targeting NRG1 fusions in lung cancer.
        Clin Cancer Res. 2015; 21: 1989-1994https://doi.org/10.1158/1078-0432.CCR-14-0854
        • Amatu A.
        • Somaschini A.
        • Cerea G.
        • Bosotti R.
        • Valtorta E.
        • Buonandi P.
        • Marrapese G.
        • Veronese S.
        • Luo D.
        • Hornby Z.
        • et al.
        Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer.
        Br J Cancer. 2015; 113: 1730-1734https://doi.org/10.1038/bjc.2015.401
        • Shitara K.
        • Bang Y.-.J.
        • Iwasa S.
        • Sugimoto N.
        • Ryu M.-.H.
        • Sakai D.
        • Chung H.-.C.
        • Kawakami H.
        • Yabusaki H.
        • Lee J.
        • et al.
        Trastuzumab Deruxtecan in previously treated HER2-positive gastric cancer.
        N Engl J Med. 2020; 382: 2419-2430https://doi.org/10.1056/NEJMoa2004413
        • Modi S.
        • Saura C.
        • Yamashita T.
        • Park Y.H.
        • Kim S.-.B.
        • Tamura K.
        • Andre F.
        • Iwata H.
        • Ito Y.
        • Tsurutani J.
        • et al.
        Trastuzumab Deruxtecan in previously treated HER2-positive breast cancer.
        N Engl J Med. 2020; 382: 610-621https://doi.org/10.1056/NEJMoa1914510
        • Tsimberidou A.M.
        • Fountzilas E.
        • Nikanjam M.
        Review of precision cancer medicine: evolution of the treatment paradigm.
        Cancer Treat Rev. 2020; 86102019https://doi.org/10.1016/j.ctrv.2020.102019
        • Otoshi T.
        • Nagano T.
        • Tachihara M.
        • et al.
        Possible biomarkers for cancer immunotherapy.
        Cancers (Basel). 2019; 11: 935https://doi.org/10.3390/cancers11070935
        • van de Haar J.
        • Hoes L.R.
        • Roepman P.
        et al. Limited evolution of the actionable metastatic cancer genome under therapeutic pressure.
        Nat Med. 2021; 27: 1553-1563https://doi.org/10.1038/s41591-021-01448-w
        • Hirahata T.
        • ul Quraish R.
        • ul Quraish A.
        • et al.
        Liquid biopsy: a distinctive approach to the diagnosis and prognosis of cancer.
        Cancer Inform. 2022; 2111769351221076062https://doi.org/10.1177/11769351221076062
        • Patelli G.
        • Vaghi C.
        • Tosi F.
        et al. Liquid biopsy for prognosis and treatment in metastatic colorectal cancer: circulating tumor cells vs circulating tumor DNA.
        Target. Oncol. 2021; 16: 309-324https://doi.org/10.1007/s11523-021-00795-5
        • Aldea M.
        • Andre F.
        • Marabelle A.
        et al. Overcoming resistance to tumor-targeted and immune-targeted therapies.
        Cancer Discov. 2021; 11: 874-899https://doi.org/10.1158/2159-8290.CD-20-1638
        • Doebele R.C.
        Acquired resistance is oncogene and drug agnostic.
        Cancer Cell. 2019; 36: 347-349https://doi.org/10.1016/j.ccell.2019.09.011
        • Cocco E.
        • Schram A.M.
        • Kulick A.
        • et al.
        Resistance to TRK inhibition mediated by convergent MAPK pathway activation.
        Nat. Med. 2019; 25: 1422-1427https://doi.org/10.1038/s41591-019-0542-z
        • Yun M.R.
        • Kim D.H.
        • Kim S.-.Y.
        • et al.
        Repotrectinib exhibits potent antitumor activity in treatment-naïve and solvent-front–Mutant ROS1-rearranged non–small cell lung cancer.
        Clin Cancer Res. 2020; 26: 3287-3295https://doi.org/10.1158/1078-0432.CCR-19-2777
        • Solomon B.J.
        • Tan L.
        • Lin J.J.
        al RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies.
        J Thorac Oncol. 2020; 15: 541-549https://doi.org/10.1016/j.jtho.2020.01.006
        • Awad M.M.
        • Liu S.
        Rybkin, I.I.; et al. Acquired resistance to KRASG12C inhibition in cancer.
        N Engl J Med. 2021; 384: 2382-2393https://doi.org/10.1056/NEJMoa2105281
        • Ahronian L.G.
        • Sennott E.M.
        • Van Allen E.M.
        et al. Clinical acquired resistance to raf inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations.
        Cancer Discov. 2015; 5: 358-367https://doi.org/10.1158/2159-8290.CD-14-1518
        • Siravegna G.
        • Lazzari L.
        • Crisafulli G.
        • Sartore-Bianchi A.
        • Mussolin B.
        • Cassingena A.
        • Martino C.
        • Lanman R.B.
        • Nagy R.J.
        • Fairclough S.
        • et al.
        Radiologic and genomic evolution of individual metastases during HER2 blockade in colorectal cancer.
        Cancer Cell. 2018; 34 (148-162.e7)https://doi.org/10.1016/j.ccell.2018.06.004
        • Amodio V.
        • Mauri G.
        • Reilly N.M.
        et al. Mechanisms of immune escape and resistance to checkpoint inhibitor therapies in mismatch repair deficient metastatic colorectal cancers.
        Cancers (Basel). 2021; 13: 2638https://doi.org/10.3390/cancers13112638
        • Keenan T.E.
        • Burke K.P.
        • Van Allen E.M.
        Genomic correlates of response to immune checkpoint blockade.
        Nat Med. 2019; 25: 389-402https://doi.org/10.1038/s41591-019-0382-x
        • Lemos H.
        • Mohamed E.
        • Huang L.
        et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation.
        Cancer Res. 2016; 76: 2076-2081https://doi.org/10.1158/0008-5472.CAN-15-1456
        • Kalbasi A.
        • Ribas A.
        Tumour-intrinsic resistance to immune checkpoint blockade.
        Nat Rev Immunol. 2020; 20: 25-39https://doi.org/10.1038/s41577-019-0218-4