Advertisement
Liver, Pancreas and Biliary Tract| Volume 54, ISSUE 10, P1392-1402, October 2022

Rifaximin and lubiprostone mitigate liver fibrosis development by repairing gut barrier function in diet–induced rat steatohepatitis

      Abstract

      Background

      Although gut-derived lipopolysaccharide (LPS) affects the progression of non-alcoholic steatohepatitis (NASH) pathogenesis, few studies have focused on this relationship to develop treatments for NASH.

      Aims

      To explore the effects of combination with rifaximin and lubiprostone on NASH liver fibrosis through the modulation of gut barrier function.

      Methods

      To induce steatohepatitis, F344 rats were fed a choline-deficient l-amino acid-defined (CDAA) diet for 12 weeks and received oral administration of rifaximin and/or lubiprostone. Histological, molecular, and fecal microbial analyses were performed. Barrier function in Caco-2 cells were assessed by in vitro assays.

      Results

      Combination rifaximin/lubiprostone treatment significantly suppressed macrophage expansion, proinflammatory responses, and liver fibrosis in CDAA-fed rats by blocking hepatic translocation of LPS and activation of toll-like receptor 4 signaling. Rifaximin and lubiprostone improved intestinal permeability via restoring tight junction proteins (TJPs) with the intestinal activation of pregnane X receptor and chloride channel-2, respectively. Moreover, this combination increased the abundance of Bacteroides, Lactobacillus, and Faecalibacterium as well as decreased that of Veillonella resulting in an increase of fecal short-chain fatty acids and a decrease of intestinal sialidase activity. Both agents also directly suppressed the LPS-induced barrier dysfunction and depletion of TJPs in Caco-2 cells.

      Conclusion

      The combination of rifaximin and lubiprostone may provide a novel strategy for treating NASH-related fibrosis.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Huang D.Q.
        • El-Serag H.B.
        • Loomba R.
        Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention.
        Nat Rev Gastroenterol Hepatol. 2021; 18: 223-238
        • Sanyal A.J.
        • Van Natta M.L.
        • Clark J.
        • et al.
        Prospective Study of Outcomes in Adults with Nonalcoholic Fatty Liver Disease.
        N Engl J Med. 2021; 385: 1559-1569
        • Taylor R.S.
        • Taylor R.J.
        • Bayliss S.
        • et al.
        Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: a Systematic Review and Meta-Analysis.
        Gastroenterology. 2020; 158 (1611-25.e12)
        • Robert F.S.
        • Ira T.
        • Utpal B.P.
        Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis.
        Gastroenterology. 2020; 158: 1913-1928
        • Tilg H.
        • Adolph T.E.
        • Moschen A.R.
        Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: revisited After a Decade.
        Hepatology. 2021; 73: 833-842
        • Tripathi A.
        • Debelius J.
        • Brenner D.A.
        • et al.
        The gut-liver axis and the intersection with the microbiome.
        Nat Rev Gastroenterol Hepatol. 2018; 15: 397-411
        • Chopyk D.M.
        • Grakoui A.
        Contribution of the intestinal microbiome and gut barrier to hepatic disorders.
        Gastroenterology. 2020; 159: 849-863
        • Aoyama T.
        • Paik Y.H.
        • Seki E.
        Toll-like receptor signaling and liver fibrosis.
        Gastroenterol Res Pract. 2010; 2010192543
        • Sharifnia T.
        • Antoun J.
        • Verriere T.G.C.
        • et al.
        Hepatic TLR4 signaling in obese NAFLD.
        Am J Physiol Gastrointest Liver Physiol. 2015; 309: G270-G278
        • Frasinariu O.E.
        • Ceccarelli S.
        • Alisi A.
        • et al.
        Gut-liver axis and fibrosis in nonalcoholic fatty liver disease: an input for novel therapies.
        Dig Liver Dis. 2013; 45: 543-551
        • Bajaj J.S.
        • Barbara G.
        • DuPont H.
        • et al.
        New concepts on intestinal microbiota and the role of the non-absorbable antibiotics with special reference to rifaximin in digestive diseases.
        Dig Liver Dis. 2018; 50: 741-749
        • Caraceni P.
        • Vargas V.
        • Solà E.
        • et al.
        The use of rifaximin in patients with cirrhosis.
        Hepatology. 2021; 74: 1660-1673
        • Kaji K.
        • Takaya H.
        • Saikawa S.
        • et al.
        Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity.
        World J Gastroenterol. 2017; 23: 8355-8366
        • Kaji K.
        • Saikawa S.
        • Takaya H.
        • et al.
        Rifaximin alleviates endotoxemia with decreased serum levels of soluble CD163 and mannose receptor and partial modification of gut microbiota in cirrhotic patients.
        Antibiotics (Basel). 2020; 9: 145
        • Fujinaga Y.
        • Kawaratani H.
        • Kaya D.
        • et al.
        Effective combination therapy of angiotensin-II receptor blocker and rifaximin for hepatic fibrosis in rat model of nonalcoholic steatohepatitis.
        Int J Mol Sci. 2020; 21: 5589
        • Fujimoto Y.
        • Kaji K.
        • Nishimura N.
        • et al.
        Dual therapy with zinc acetate and rifaximin prevents from ethanol-induced liver fibrosis by maintaining intestinal barrier integrity.
        World J Gastroenterol. 2021; 27: 8323-8342
        • Lacy B.E.
        • Levy L.C.
        Lubiprostone: a novel treatment for chronic constipation.
        Clin Interv Aging. 2008; 3: 357-364
        • Lembo A.J.
        • Johanson J.F.
        • Parkman H.P.
        • et al.
        Long-term safety and effectiveness of lubiprostone, a chloride channel (ClC-2) activator, in patients with chronic idiopathic constipation.
        Dig Dis Sci. 2011; 56: 2639-2645
        • Jin Y.
        • Pridgen T.A.
        • Blikslager A.T.
        Pharmaceutical activation or genetic absence of ClC-2 alters tight junctions during experimental colitis.
        Inflamm Bowel Dis. 2015; 21: 2747-2757
        • Kato T.
        • Honda Y.
        • Kurita Y.
        • et al.
        Lubiprostone improves intestinal permeability in humans, a novel therapy for the leaky gut: a prospective randomized pilot study in healthy volunteers.
        PLoS ONE. 2017; 12e0175626
        • Kessoku T.
        • Imajo K.
        • Kobayashi T.
        • et al.
        Lubiprostone in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled, phase 2a trial.
        Lancet Gastroenterol Hepatol. 2020; 5: 996-1007
        • Namisaki T.
        • Moriya K.
        • Kitade M.
        • et al.
        Effect of combined farnesoid X receptor agonist and angiotensin II type 1 receptor blocker on hepatic fibrosis.
        Hepatol Commun. 2017; 1: 928-945
        • Evan A.T.
        Vehicle selection for nonclinical oral safety studies.
        Expert Opin Drug Metab Toxicol. 2013; 9: 1635-1646
        • Hayashi S.
        • Kurata N.
        • Yamaguchi A.
        • et al.
        Lubiprostone prevents nonsteroidal anti-inflammatory drug-induced small intestinal damage by suppressing the expression of inflammatory mediators via EP4 receptors.
        J Pharmacol Exp Ther. 2014; 349: 470-479
        • Jin H.G.
        • Shi-Lei W.
        • Huan T.
        • et al.
        Inhibition of cyclooxygenase-2 alleviates liver cirrhosis via improvement of the dysfunctional gut-liver axis in rats.
        Am J Physiol - Gastrointest Liver Physiol. 2016; 310: G962-G972
        • Takamitsu T.
        • Noriko M.
        • Shozo T.
        • et al.
        High-sensitivity detection of short-chain fatty acids in porcine ileal, cecal, portal and abdominal blood by gas chromatography-mass spectrometry.
        Anim Sci J. 2014; 85: 494-498
        • Nathalie J.
        • Louise T.
        • DO C.
        Sialidases from gut bacteria: a mini-review.
        Biochem Soc Trans. 2016; 44: 166-175
        • Nishii N.
        • Oshima T.
        • Li M.
        • et al.
        Lubiprostone Induces Claudin-1 and Protects Intestinal Barrier Function.
        Pharmacology. 2020; 105: 102-108
        • Lin W.
        • Wang Y.M.
        • Chai S.C.
        • et al.
        SPA70 is a potent antagonist of human pregnane X receptor.
        Nat Commun. 2017; 8: 741
        • Rehman S.
        • Narayanan K.
        • Nickerson A.J.
        • et al.
        Parallel intermediate conductance K + and Cl channel activity mediates electroneutral K + exit across basolateral membranes in rat distal colon.
        Am J Physiol Gastrointest Liver Physiol. 2020; 319: G142-G150
        • Aditya G.
        • Angela Z.
        • Sarah L.E.
        • et al.
        Pregnane X receptor activation attenuates inflammation-associated intestinal epithelial barrier dysfunction by inhibiting cytokine-induced myosin light-chain kinase expression and c-Jun N-terminal kinase 1/2 activation.
        J Pharmacol Exp Ther. 2016; 359: 91-101
        • Prashant K.N.
        • Lana L.
        • Thomas Y.M.
        Chloride channel ClC- 2 enhances intestinal epithelial tight junction barrier function via regulation of caveolin-1 and caveolar trafficking of occludin.
        Exp Cell Res. 2017; 352: 113-122
        • Schwiertz A.
        • Taras D.
        • Schäfer K.
        • et al.
        Microbiota and SCFA in lean and overweight healthy subjects.
        Obesity (Silver Spring). 2010; 18: 190-195
        • Martin-Gallausiaux C.
        • Marinelli L.
        • Blottière H.M.
        • et al.
        SCFA: mechanisms and functional importance in the gut.
        Proc Nutr Soc. 2021; 80: 37-49
        • Ara K.
        • Filipe D.V.
        • Petia K.D.
        • et al.
        From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites.
        Cell. 2016; 165: 1332-1345
        • Patel V.C.
        • Lee S.
        • McPhail M.J.W.
        • et al.
        Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial.
        J Hepatol. 2021; (S0168-8278(21)02040-7)
        • Rahman K.
        • Desai C.
        • Iyer S.S.
        • et al.
        Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol.
        Gastroenterology. 2016; 151: 733-746
        • Luther J.
        • Garber J.J.
        • Khalili H.
        • et al.
        Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability.
        Cell Mol Gastroenterol Hepatol. 2015; 1: 222-232
        • De Munck T.J.I.
        • Xu P.
        • Verwijs H.J.A.
        • et al.
        Intestinal permeability in human nonalcoholic fatty liver disease: a systematic review and meta-analysis.
        Liver Int. 2020; 40: 2906-2916
        • Yang L.
        • Liu B.
        • Zheng J.
        • et al.
        Rifaximin alters intestinal microbiota and prevents progression of ankylosing spondylitis in mice.
        Front Cell Infect Microbiol. 2019; 9: 44
        • Duarte S.M.B.
        • Stefano J.T.
        • Miele L.
        • et al.
        Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: a prospective pilot study.
        Nutr Metab Cardiovasc Dis. 2018; 28: 369-384
        • Iino C.
        • Endo T.
        • Mikami K.
        • et al.
        Significant decrease in Faecalibacterium among gut microbiota in nonalcoholic fatty liver disease: a large BMI- and sex-matched population study.
        Hepatol Int. 2019; 13: 748-756
        • Musch M.W.
        • Wang Y.
        • Claud E.C.
        • et al.
        Lubiprostone decreases mouse colonic inner mucus layer thickness and alters intestinal microbiota.
        Dig Dis Sci. 2013; 58: 668-677
        • Ferolla S.M.
        • Armiliato G.N.A.
        • Couto C.A.
        • et al.
        The role of intestinal bacteria overgrowth in obesity-related nonalcoholic fatty liver disease.
        Nutrients. 2014; 6: 5583-5599
        • Kapil S.
        • Duseja A.
        • Sharma B.K.
        • et al.
        Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease.
        J Gastroenterol Hepatol. 2016; 31: 213-221
        • Wang J.
        • Zhang L.
        • Hou X.
        Efficacy of rifaximin in treating with small intestine bacterial overgrowth: a systematic review and meta-analysis.
        Expert Rev Gastroenterol Hepatol. 2021; 15: 1385-1399
        • Sarosiek I.
        • Bashashati M.
        • Alvarez A.
        • et al.
        Lubiprostone accelerates intestinal transit and alleviates small intestinal bacterial overgrowth in patients with chronic constipation.
        Am J Med Sci. 2016; 352: 231-238