Abstract
Background
Aims
Methods
Results
Conclusion
Keywords
1. Introduction
IARC Helicobacter pylori Working Group, 2015. Helicobacter pylori eradication as a strategy for gastric cancer pre- vention. Lyon, France: International Agency for Research on Cancer (IARC Working Group Reports, No. 8). Avail- able at: http://www.iarc.fr/en/publications/pdfs-online/wrk/wrk8/index.php. Accessed on November 21, 2015.
- Tang D.
- Wang L.
- Ling T.
- et al.
2. Materials and methods
- Moher D.
- Liberati A.
- Tetzlaff J.
- Altman D.G.
Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
2.1 Study selection
2.2 Statistical analyses
3. Results
- Yan T.
- Wong P.K.
- Choi I.C.
- Vong C.M.
- Yu H.H.
First Author, year of publication | Country | Patients | Images/ videos | AI system | Endoscope system | Correctly identified | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | LR + | LR - |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zhang Y, 2020 | China | 1699 | 5589 images (only antrum) | CNN | WLI i-Scan mode | 1600 | 94.2 | 94.6 (95%CI 93.7–95.4) | 94.0 (95%CI 93.0–95.0) | 94.8 (95%CI 94.0–95.5) | 93.8 (95%CI 92.8–94.6) | 15.8 (95%CI 13.5–18.4) | 0.1 (95%CI 0.1–0.2) |
Guimar(a)es P, 2019 | Germany | 35 | 70 images (corpus or fundus) | DL | WLI | 65 | 92.9 | 100 | 87.5 | 85.7 | 100 | 8.0 | 0.0 |
Yan T, 2020 | China | 80 | 477 images | CNN | NBI and magnifying-NBI | 411 | 86.2 | 92.6 (95%CI 88.3–95.4) | 79.6 (95%CI 73.7–84.4) | 82.4 (95%CI 78.3–85.8) | 91.2 (95%CI 86.9–94.2) | 4.5 (95%CI 3.5–5.9) | 0.1 (95%CI 0.1–0.2) |
Xu M, 2021 | China | 77 | 98 | DCNN-ENDOANGEL | Image-enhanced endoscopy | 86 | 87.8 | 96.7 (95%CI 88.7–99.6) | 73.0 (95%CI 55.9–86.2) | 85.5 (95%CI 75.0–92.8 | 93.1 (95%CI 77.2–99.2) | 3.6 | 0.0 |
First Author, year of publication | Country | Patients | Images/videos | AI system | Endoscope system | Correctly identified | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | PLR | NLR |
Zhang Y, 2020 | China | 1699 | 1641 images (only antrum) | CNN | WLI i-Scan mode | 1546 | 94.2 | 94.6 | 94.0 | 15.7 | 0.1 | ||
Guimar(a)es P, 2019 | Germany | 35 | 70 images (corpus or fundus) | DL | WLI | 65 | 92.9 | 100 | 87.5 | 85.7 | 100 | 8.0 | 0.0 |
Yan T, 2020 | China | 80 | 477 images | CNN | NBI and magnifying-NBI | 411 | 86.2 (95%CI 82.7–89.1) | 92.6 (95%CI 88.3–95.4) | 79.6 (95%CI 73.7–84.4) | 82.4 (95%CI 78.3–85.8) | 91.2 (95%CI 86.9–94.2) | 4.5 (95%CI 3.5–5.9) | 0.1 (95%CI 0.1–0.2) |
Xu M, 2021 | China | 77 | 98 | DCNN-ENDOANGEL | Image-enhanced endoscopy | 86 | 87.8 (95%CI 79.6–93.5) | 96.7 (95%CI 88.7–99.6) | 73.0 (95%CI 55.9–86.2) | 85.5 (95%CI 75.0–92.8 | 93.1 (95%CI 77.2–99.2) | 3.6 | 0.0 |
First Author, year of publication | Country | Patients | Images | AI system | Endoscope system | Correctly identified | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | LR+ | LR- |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Huang CR, 2008 | Taiwan | 236 | Not available | SFFS based on SVM | WLI | 213 | 90.3 | 98.5 (95%CI 95.6–99–5) | 80.2 (95%CI 74.4–85.0) | 85.9 (95%CI 80.7–90.0) | 97.7 (95%CI 94.6–99.1) | 5.0 (95%CI 3.4–7.3) | 0.0 (95%CI 0.0–0.1) |
Zheng W, 2019 | China | 452 | 3755 | CNN | WLI | 3522 | 93.8 | 91.6 (95%CI 90.7–92.5) | 98.6 (95%CI 98.1–98.9) | 99.3 (95%CI 98.9–99.5) | 84.3 (95%CI 83.1–85.5) | 63.6 (95%CI 39.7–102.0) | 0.1 (95%CI 0.1–0.1) |
Nakashima H, 2018 | Japan | 60 | 648 | CNN | WLI, BLI , and LCI | 38 | 63.3 | 66.7 (95%CI 53.2–78.0) | 60.0 (95%CI 46.5–72.2) | 62.5 (95%CI 49.0–74.4) | 64.3 (95%CI 50.0–75.9) | 1.7 (95%CI 1.0–2.8) | 0.6 (95%CI 0.3–1.0) |
Shichijo S, 2017 | Japan | 397 | 11,481 | CNN | WLI | 348 | 87.7 | 88.9 (95%CI 85.3–91.7) | 87.4 (95%CI 83.6–90.4) | 61.0 (95%CI 55.9–65.7) | 97.3 (95%CI 95.0–98.6) | 7.1 (95%CI 5.2–9.5) | 0.1 (95%CI 0.1–0.2) |
Shichijo S, 2019 | Japan | 847 | 23,699 | CNN | WLI | 774 | 91.4 | 62.9 (95%CI 59.5–66.1) | 94.0 (95%CI 92.1–95.4) | 48.4 (95%CI 44.9–51.8) | 96.6 (95% CI 95.0–97.6) | 10.4 (95%CI 7.5–14.5) | 0.4 (95%CI 0.3–0.5) |
Itoh T, 2018 | Japan | 139 | 30 | CNN | WLI | 26 | 86.7 | 86.7 (95%CI 68.4–95.6) | 86.7 (95%CI 68.4–95.6) | 86.7 (95%CI 68.4–95.6) | 86.7 (95%CI 68.4–95.6) | 6.5 (95%CI 1.8–24.0) | 0.2 (95%CI 0.0–0.6) |
Huang CR, 2004 | Taiwan | 74 | 222 | RFSNN | WLI | 65 | 87.8 | 85.4 (95%CI 74.8–92.2) | 90.9 (95%CI 91.4–96.0) | 92.1 (95%CI 82.8–96.8) | 83.3 (95%CI 72.5–90.6) | 9.4 (95%CI 3.2–27.8) | 0.2 (95%CI 0.1–0.3) |
Nakashima H, 2020 | Japan | 120 | 120 WLI imaging and 120 LCI imaging | CAD system | WLI and LCI | 77.5 | 60.0 (95%CI 44.3.75.1) | 86.2 (95%CI 76.7–92.9) | 68.8 (95%CI 44.3–75.1) | 4.3 | 0.5 | ||
Yasuda T, 2019 | Japan | 105 | 525 | SVM | LCI | 92 | 87.6 | 90.5 (95%CI 82.8–95.1) | 85.7 (95%CI 77.2–91.5) | 80.9 (95%CI 71.8–87.6) | 93.1 (95%CI 86.0–96.9) | 6.3 (95%CI 3.4–11.7) | 0.1 (95%CI 0.0–0.3) |


3.1 AI and gastric precancerous lesions
- Yan T.
- Wong P.K.
- Choi I.C.
- Vong C.M.
- Yu H.H.
3.1.1 Meta-analysis

3.1.2 AI and Helicobacter pylori infection
3.1.3 Meta-analysis

4. Discussion
- Pimentel-Nunes P.
- et al.
IARC Helicobacter pylori Working Group, 2015. Helicobacter pylori eradication as a strategy for gastric cancer prevention. Lyon, France: International Agency for Research on Cancer (IARC Working Group Reports, No. 8). Avail- able at: http://www.iarc.fr/en/publications/pdfs-online/wrk/wrk8/index.php. Accessed on November 21,2015.
Funding
Declaration of Competing Interest
Appendix. Supplementary materials
References
- Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [published correction appears in CA Cancer J Clin. 2020 Jul;70(4):313].CA Cancer J Clin. 2018; 68: 394-424https://doi.org/10.3322/caac.21492
- Human gastric carcinogenesis: a multistep and multifactorial process–first American cancer society award lecture on cancer epidemiology and prevention.Cancer Res. 1992; 52: 6735-6740
- Pseudopyloric metaplasia is not associated with the development of gastric cancer.Am J Gastroenterol. 2021; 116: 1859-1867https://doi.org/10.14309/ajg.0000000000001390
IARC Helicobacter pylori Working Group, 2015. Helicobacter pylori eradication as a strategy for gastric cancer pre- vention. Lyon, France: International Agency for Research on Cancer (IARC Working Group Reports, No. 8). Avail- able at: http://www.iarc.fr/en/publications/pdfs-online/wrk/wrk8/index.php. Accessed on November 21, 2015.
- A multicenter prospective study of the real-time use of narrow-band imaging in the diagnosis of premalignant gastric conditions and lesions.Endoscopy. 2016; 48: 723-730https://doi.org/10.1055/s-0042-108435
- Image-enhanced endoscopy for gastric preneoplastic conditions and neoplastic lesions: a systematic review and meta-analysis.Endoscopy. 2020; 52: 1048-1065https://doi.org/10.1055/a-1205-0570
- Artificial intelligence: a modern approach.2th ed. Pearson Education, 2003
- Artificial intelligence in gastric cancer: application and future perspectives.World J Gastroenterol. 2020; 26: 5408-5419https://doi.org/10.3748/wjg.v26.i36.5408
- Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video).Gastrointest Endosc. 2020; 91: 1264-1271.e1https://doi.org/10.1016/j.gie.2019.12.049
- Development and validation of a real-time artificial intelligence-assisted system for detecting early gastric cancer: a multicentre retrospective diagnostic study.EBioMedicine. 2020; 62103146https://doi.org/10.1016/j.ebiom.2020.103146
- Development and validation of a deep neural network for accurate evaluation of endoscopic images from patients with ulcerative colitis.Gastroenterology. 2020; 158: 2150-2157https://doi.org/10.1053/j.gastro.2020.02.012
- Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model.Gut. 2019; 68: 94-100https://doi.org/10.1136/gutjnl-2017-314547
- Applications of artificial intelligence for the diagnosis of gastrointestinal diseases.Diagnostics (Basel). 2021 Aug 30; 11: 1575
- Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.PLoS Med. 2009; 6e1000097https://doi.org/10.1371/journal.pmed.1000097
- Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence.Dig Liver Dis. 2020; 52: 566-572https://doi.org/10.1016/j.dld.2019.12.146
- Deep-learning based detection of gastric precancerous conditions.Gut. 2020; 69: 4-6https://doi.org/10.1136/gutjnl-2019-319347
- Intelligent diagnosis of gastric intestinal metaplasia based on convolutional neural network and limited number of endoscopic images.Comput Biol Med. 2020; 126104026https://doi.org/10.1016/j.compbiomed.2020.104026
- Artificial intelligence in the diagnosis of gastric precancerous conditions by image-enhanced endoscopy: a multicenter, diagnostic study (with video).Gastrointest Endosc. 2021; 94: 540-548.e4https://doi.org/10.1016/j.gie.2021.03.013
- High accuracy of convolutional neural network for evaluation of helicobacter pylori infection based on endoscopic images: preliminary experience.Clin Transl Gastroenterol. 2019; 10: e00109https://doi.org/10.14309/ctg.0000000000000109
- Artificial intelligence diagnosis of Helicobacter pylori infection using blue laser imaging-bright and linked color imaging: a single-center prospective study.Ann Gastroenterol. 2018; 31: 462-468https://doi.org/10.20524/aog.2018.0269
- Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images.Scand J Gastroenterol. 2019; 54: 158-163https://doi.org/10.1080/00365521.2019.1577486
- Application of convolutional neural networks in the diagnosis of helicobacter pylori infection based on endoscopic images.E Bio Med. 2017; 25: 106-111https://doi.org/10.1016/j.ebiom.2017.10.014
- Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images.Endosc Int Open. 2018; 6: E139-E144https://doi.org/10.1055/s-0043-120830
- Computerized diagnosis of Helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network.Endoscopy. 2004; 36: 601-608https://doi.org/10.1055/s-2004-814519
- Helicobacter pylori-related gastric histology classification using support-vector-machine-based feature selection.IEEE Trans Inf Technol Biomed. 2008; 12: 523-531https://doi.org/10.1109/TITB.2007.913128
- Potential of automatic diagnosis system with linked color imaging for diagnosis of Helicobacter pylori infection.Dig Endosc. 2020; 32: 373-381https://doi.org/10.1111/den.13509
- Endoscopic three-categorical diagnosis of Helicobacter pylori infection using linked color imaging and deep learning: a single-center prospective study (with video).Gastric Cancer. 2020; 23: 1033-1040https://doi.org/10.1007/s10120-020-01077-1
- Convolutional neural networks in the computer-aided diagnosis of Helicobacter pylori infection and non-causal comparison to physician endoscopists: a systematic review with meta-analysis.Ann Gastroenterol. 2021; 34: 20-25https://doi.org/10.20524/aog.2020.0542
- Artificial intelligence for the prediction of Helicobacter pylori infection in endoscopic images: systematic review and meta-analysis of diagnostic test accuracy.J Med Internet Res. 2020; 22 (Published 2020 Sep 16): e21983https://doi.org/10.2196/21983
- Long-term sequelae of Helicobacter pylori gastritis.Lancet. 1995; 345: 1525-1528https://doi.org/10.1016/s0140-6736(95)91084-0
- Two-thirds of atrophic body gastritis patients have evidence of Helicobacter pylori infection.Helicobacter. 2001; 6: 225-233https://doi.org/10.1046/j.1083-4389.2001.00032.x
- Effect of Helicobacter pylori eradication on the incidence of gastric cancer: a systematic review and meta-analysis.Gastric Cancer. 2019; 22: 435-445https://doi.org/10.1007/s10120-018-0876-0
- Helicobacter pylori infection and the development of gastric cancer.N Engl J Med. 2001; 345: 784-789https://doi.org/10.1056/NEJMoa001999
- Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric cancer development after Helicobacter pylori eradication.Gastrointest Endosc. 2016; 84: 618-624https://doi.org/10.1016/j.gie.2016.03.791
- The detection, surveillance and treatment of premalignant gastric lesions related to Helicobacter pylori infection.Helicobacter. 2007; 12: 1-15https://doi.org/10.1111/j.1523-5378.2007.00475.x
- Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): european society of gastrointestinal en- doscopy (ESGE), European helicobacter and microbiota study group (EHMSG), European society of pathology (ESP), and sociedade Portuguesa de endoscopia digestiva (SPED) guideline update 2019.Endoscopy. 2019; 51: 365-388
- Endoscopic surveillance at 3 years after diagnosis, according to European guidelines, seems safe in patients with atrophic gastritis in a low-risk region.Dig Liver Dis. Apr 2021; 53: 467-473
IARC Helicobacter pylori Working Group, 2015. Helicobacter pylori eradication as a strategy for gastric cancer prevention. Lyon, France: International Agency for Research on Cancer (IARC Working Group Reports, No. 8). Avail- able at: http://www.iarc.fr/en/publications/pdfs-online/wrk/wrk8/index.php. Accessed on November 21,2015.
- IARC working group on the evaluation of carcinogenic risks to humans. Lyon, 7-14 June 1994.IARC Monogr Eval Carcinog Risks Hum. 1994; 61: 1-241
- Global burden of cancers attributable to infections in 2008: a review and synthetic analysis.Lancet Oncol. 2012; 13: 607-615https://doi.org/10.1016/S1470-2045(12)70137-7
Article info
Publication history
Footnotes
Guarantor of the article: Esposito Gianluca
Specific author contributions: Dilaghi E. and Esposito G. contributed to the selection of the studies and wrote the article. Lahner E. contributed to revision of statistical analysis. Lahner E. and Annibale B. contributed to critically revised the manuscript. Esposito G. contributed to conception and design of the study and to final revision of the manuscript. All authors approved the final draft submitted.