Advertisement
Review| Volume 54, ISSUE 3, P299-308, March 2022

The application of artificial intelligence in hepatology: A systematic review

      Abstract

      The integration of human and artificial intelligence (AI) in medicine has only recently begun but it has already become obvious that intelligent systems can dramatically improve the management of liver diseases. Big data made it possible to envisage transformative developments of the use of AI for diagnosing, predicting prognosis and treating liver diseases, but there is still a lot of work to do.
      If we want to achieve the 21st century digital revolution, there is an urgent need for specific national and international rules, and to adhere to bioethical parameters when collecting data. Avoiding misleading results is essential for the effective use of AI. A crucial question is whether it is possible to sustain, technically and morally, the process of integration between man and machine.
      We present a systematic review on the applications of AI to hepatology, highlighting the current challenges and crucial issues related to the use of such technologies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Topol EJ.
        High-performance medicine: the convergence of human and artificial intelligence.
        Nat Med. 2019; 25: 44-56https://doi.org/10.1038/s41591-018-0300-7
        • Hulsen T
        • Jamuar SS
        • Moody AR
        • et al.
        From big data to precision medicine.
        Front Med. 2019; 6: 34https://doi.org/10.3389/fmed.2019.00034
        • Liyanage H
        • Liaw ST
        • Jonnagaddala J
        • et al.
        Artificial intelligence in primary health care: perceptions, issues, and challenges.
        Yearb Med Inform. 2019; 28: 41-46https://doi.org/10.1055/s-0039-1677901
        • Yu KH
        • Beam AL
        • Kohane IS.
        Artificial intelligence in healthcare.
        Nat Biomed Eng. 2018; 2: 719-731https://doi.org/10.1038/s41551-018-0305-z
        • Tao K
        • Bian Z
        • Zhang Q
        • et al.
        Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma.
        EBioMedicine. 2020; 56102811https://doi.org/10.1016/j.ebiom.2020.102811
        • Xu K
        • Zhao Z
        • Gu J
        • et al.
        Multi-Instance Multi-Label Learning for Gene Mutation Prediction in Hepatocellular Carcinoma.
        Annu Int Conf IEEE Eng Med Biol Soc. 2020; 2020: 6095-6098https://doi.org/10.1109/EMBC44109.2020.9175293
        • Zhao X
        • Dou J
        • Cao J
        • et al.
        Uncovering the potential differentially expressed miRNAs as diagnostic biomarkers for hepatocellular carcinoma based on machine learning in The Cancer Genome Atlas database.
        Oncol Rep. 2020; 43: 1771-1784https://doi.org/10.3892/or.2020.7551
        • Shen J
        • Qi L
        • Zou Z
        • et al.
        Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases.
        Sci Rep. 2020; 10: 4435https://doi.org/10.1038/s41598-020-61298-3
        • Kaur H
        • Bhalla S
        • Raghava GPS.
        Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles.
        PLoS One. 2019; 14e0221476https://doi.org/10.1371/journal.pone.0221476
        • Itzel T
        • Spang R
        • Maass T
        • et al.
        Random gene sets in predicting survival of patients with hepatocellular carcinoma.
        J Mol Med (Berl). 2019; 97: 879-888https://doi.org/10.1007/s00109-019-01764-2
        • Dong RZ
        • Yang X
        • Zhang XY
        • et al.
        Predicting overall survival of patients with hepatocellular carcinoma using a three-category method based on DNA methylation and machine learning.
        J Cell Mol Med. 2019; 23: 3369-3374https://doi.org/10.1111/jcmm.14231
        • Chaudhary K
        • Poirion OB
        • Lu L
        • et al.
        Deep learning-based multi-omics integration robustly predicts survival in liver cancer.
        Clin Cancer Res. 2018; 24: 1248-1259https://doi.org/10.1158/1078-0432.CCR-17-0853
        • Ziv E
        • Yarmohammadi H
        • Boas FE
        • et al.
        Gene signature associated with upregulation of the Wnt/β-catenin signaling pathway predicts tumor response to transarterial embolization.
        J Vasc Interv Radiol. 2017; 28 (e1. doi:): 349-355https://doi.org/10.1016/j.jvir.2016.11.004
        • Yu SJ
        • Kim H
        • Min H
        • et al.
        Targeted proteomics predicts a sustained complete-response after transarterial chemoembolization and clinical outcomes in patients with hepatocellular carcinoma: a prospective cohort study.
        J Proteome Res. 2017; 16: 1239-1248https://doi.org/10.1021/acs.jproteome.6b00833
        • Gui T
        • Dong X
        • Li R
        • et al.
        Identification of hepatocellular carcinoma-related genes with a machine learning and network analysis.
        J Comput Biol. Jan 2015; 22: 63-71https://doi.org/10.1089/cmb.2014.0122
        • Wang L
        • Tan J
        • Ge Y
        • et al.
        Assessment of liver metastases radiomic feature reproducibility with deep-learning-based semi-automatic segmentation software.
        Acta Radiol. 2021; 62: 291-301https://doi.org/10.1177/0284185120922822
        • Jiang YQ
        • Cao SE
        • Cao S
        • et al.
        Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning.
        J Cancer Res Clin Oncol. 2021; 147: 821-833https://doi.org/10.1007/s00432-020-03366-9
        • Giannini V
        • Defeudis A
        • Rosati S
        • et al.
        An innovative radiomics approach to predict response to chemotherapy of liver metastases based on CT images.
        Annu Int Conf IEEE Eng Med Biol Soc. 2020; 2020: 1339-1342https://doi.org/10.1109/EMBC44109.2020.9176627
        • Mao B
        • Zhang L
        • Ning P
        • et al.
        Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics.
        Eur Radiol. 2020; 30: 6924-6932https://doi.org/10.1007/s00330-020-07056-5
        • Kim J
        • Min JH
        • Kim SK
        • et al.
        Detection of hepatocellular carcinoma in contrast-enhanced magnetic resonance imaging using deep learning classifier: a multi-center retrospective study.
        Sci Rep. 2020; 10: 9458https://doi.org/10.1038/s41598-020-65875-4
        • Brehar R
        • Mitrea DA
        • Vancea F
        • et al.
        Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound images.
        Sensors (Basel). 2020; 20: 3085https://doi.org/10.3390/s20113085
        • Yang Q
        • Wei J
        • Hao X
        • et al.
        Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study.
        EBioMedicine. 2020; 56102777https://doi.org/10.1016/j.ebiom.2020.102777
        • Winkel DJ
        • Weikert TJ
        • Breit HC
        • et al.
        Validation of a fully automated liver segmentation algorithm using multi-scale deep reinforcement learning and comparison versus manual segmentation.
        Eur J Radiol. 2020; 126108918https://doi.org/10.1016/j.ejrad.2020.108918
        • Doman K
        • Konishi T
        • Mekada Y.
        Lesion Image Synthesis Using DCGANs for Metastatic Liver Cancer Detection.
        Adv Exp Med Biol. 2020; 1213: 95-106https://doi.org/10.1007/978-3-030-33128-3_6
        • Denis de Senneville B
        • Frulio N
        • Laumonier H
        • et al.
        Liver contrast-enhanced sonography: computer-assisted differentiation between focal nodular hyperplasia and inflammatory hepatocellular adenoma by reference to microbubble transport patterns.
        Eur Radiol. 2020; 30: 2995-3003https://doi.org/10.1007/s00330-019-06566-1
        • Liu D
        • Liu F
        • Xie X
        • et al.
        Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound.
        Eur Radiol. 2020; 30: 2365-2376https://doi.org/10.1007/s00330-019-06553-6
        • Tsilimigras DI
        • Mehta R
        • Moris D
        • et al.
        Utilizing machine learning for pre- and postoperative assessment of patients undergoing resection for BCLC-0, A and B hepatocellular carcinoma: implications for resection beyond the BCLC guidelines.
        Ann Surg Oncol. 2020; 27: 866-874https://doi.org/10.1245/s10434-019-08025-z
        • Budak Ü
        • Guo Y
        • Tanyildizi E
        • et al.
        Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation.
        Med Hypotheses. 2020; 134109431https://doi.org/10.1016/j.mehy.2019.109431
        • Mokrane FZ
        • Lu L
        • Vavasseur A
        • et al.
        Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules.
        Eur Radiol. 2020; 30: 558-570https://doi.org/10.1007/s00330-019-06347-w
        • Peng J
        • Kang S
        • Ning Z
        • et al.
        Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging.
        Eur Radiol. 2020; 30: 413-424https://doi.org/10.1007/s00330-019-06318-1
        • Wang W
        • Chen Q
        • Iwamoto Y
        • et al.
        Deep learning-based radiomics models for early recurrence prediction of hepatocellular carcinoma with multi-phase CT images and clinical data.
        Annu Int Conf IEEE Eng Med Biol Soc. 2019; 2019: 4881-4884https://doi.org/10.1109/EMBC.2019.8856356
        • Jian W
        • Ju H
        • Cen X
        • et al.
        Improving the malignancy characterization of hepatocellular carcinoma using deeply supervised cross modal transfer learning for non-enhanced MR.
        Annu Int Conf IEEE Eng Med Biol Soc. 2019; 2019: 853-856https://doi.org/10.1109/EMBC.2019.8857467
        • Ji GW
        • Zhu FP
        • Xu Q
        • et al.
        Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.
        EBioMedicine. 2019; 50: 156-165https://doi.org/10.1016/j.ebiom.2019.10.057
        • Xu D
        • Sheng JQ
        • Hu PJ
        • et al.
        Predicting hepatocellular carcinoma recurrences: A data-driven multiclass classification method incorporating latent variables.
        Biomed Inform. 2019; 96103237https://doi.org/10.1016/j.jbi.2019.103237
        • Yang DW
        • Jia XB
        • Xiao YJ
        • et al.
        Noninvasive evaluation of the pathologic grade of hepatocellular carcinoma using MCF-3DCNN: a pilot study.
        Biomed Res Int. 2019; 20199783106https://doi.org/10.1155/2019/9783106
        • Sato M
        • Morimoto K
        • Kajihara S
        • et al.
        Machine-learning approach for the development of a novel predictive model for the diagnosis of hepatocellular carcinoma.
        Sci Rep. 2019; 9: 7704https://doi.org/10.1038/s41598-019-44022-8
        • Jansen MJA
        • Kuijf HJ
        • Veldhuis WB
        • et al.
        Automatic classification of focal liver lesions based on MRI and risk factors.
        PLoS One. 2019; 14e0217053https://doi.org/10.1371/journal.pone.0217053
        • Wang CJ
        • Hamm CA
        • Savic LJ
        • et al.
        Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
        Eur Radiol. 2019; 29: 3348-3357https://doi.org/10.1007/s00330-019-06214-8
        • Nayak A
        • Baidya Kayal E
        • Arya M
        • et al.
        Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen CT.
        Int J Comput Assist Radiol Surg. 2019; 14: 1341-1352https://doi.org/10.1007/s11548-019-01991-5
        • Yamada A
        • Oyama K
        • Fujita S
        • et al.
        Dynamic contrast-enhanced computed tomography diagnosis of primary liver cancers using transfer learning of pretrained convolutional neural networks: Is registration of multiphasic images necessary?.
        Int J Comput Assist Radiol Surg. 2019; 14: 1295-1301https://doi.org/10.1007/s11548-019-01987-1
        • Hamm CA
        • Wang CJ
        • Savic LJ
        • et al.
        Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
        Eur Radiol. 2019; 29: 3338-3347https://doi.org/10.1007/s00330-019-06205-9
        • Schmauch B
        • Herent P
        • Jehanno P
        • et al.
        Diagnosis of focal liver lesions from ultrasound using deep learning.
        Diagn Interv Imaging. 2019; 100: 227-233https://doi.org/10.1016/j.diii.2019.02.009
        • Brown AD
        • Kachura JR.
        Natural language processing of radiology reports in patients with hepatocellular carcinoma to predict radiology resource utilization.
        J Am Coll Radiol. 2019; 16: 840-844https://doi.org/10.1016/j.jacr.2018.12.004
        • Trivizakis E
        • Manikis GC
        • Nikiforaki K
        • et al.
        Extending 2-D convolutional neural networks to 3-D for advancing deep learning cancer classification with application to mri liver tumor differentiation.
        IEEE J Biomed Health Inform. 2019; 23: 923-930https://doi.org/10.1109/JBHI.2018.2886276
        • Abajian A
        • Murali N
        • Savic LJ
        • et al.
        Predicting treatment response to image-guided therapies using machine learning: an example for trans-arterial treatment of hepatocellular carcinoma.
        J Vis Exp. 2018; : 58382https://doi.org/10.3791/58382
        • Jiang H
        • Li S
        • Li S.
        Registration-based organ positioning and joint segmentation method for liver and tumor segmentation.
        Biomed Res Int. 2018; 20188536854https://doi.org/10.1155/2018/8536854
        • Li X
        • Chen H
        • Qi X
        • et al.
        H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes.
        IEEE Trans Med Imaging. 2018; 37: 2663-2674https://doi.org/10.1109/TMI.2018.2845918
        • Guo LH
        • Wang D
        • Qian YY
        • et al.
        A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images.
        Clin Hemorheol Microcirc. 2018; 69: 343-354https://doi.org/10.3233/CH-170275
        • Vivanti R
        • Joskowicz L
        • Lev-Cohain N
        • et al.
        Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
        Med Biol Eng Comput. 2018; 56: 1699-1713https://doi.org/10.1007/s11517-018-1803-6
        • Acharya UR
        • Koh JEW
        • Hagiwara Y
        • et al.
        Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features.
        Comput Biol Med. 2018; 94: 11-18https://doi.org/10.1016/j.compbiomed.2017.12.024
        • Yasaka K
        • Akai H
        • Abe O
        • et al.
        Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study.
        Radiology. 2018; 286: 887-896https://doi.org/10.1148/radiol.2017170706
        • Ben-Cohen A
        • Klang E
        • Diamant I
        • et al.
        CT image-based decision support system for categorization of liver metastases into primary cancer sites: initial results.
        Acad Radiol. 2017; 24: 1501-1509https://doi.org/10.1016/j.acra.2017.06.008
        • Vorontsov E
        • Tang A
        • Roy D
        • et al.
        Metastatic liver tumour segmentation with a neural network-guided 3D deformable model.
        Med Biol Eng Comput. 2017; 55: 127-139https://doi.org/10.1007/s11517-016-1495-8
        • Yim WW
        • Kwan SW
        • Yetisgen M.
        Tumor reference resolution and characteristic extraction in radiology reports for liver cancer stage prediction.
        J Biomed Inform. 2016; 64: 179-191https://doi.org/10.1016/j.jbi.2016.10.005
        • Huang L
        • Weng M
        • Shuai H
        • et al.
        Automatic liver segmentation from CT images using single-block linear detection.
        Biomed Res Int. 2016; 20169420148https://doi.org/10.1155/2016/9420148
        • Le TN
        • Bao PT
        • Huynh HT.
        Liver tumor segmentation from MR images using 3D fast marching algorithm and single hidden layer feedforward neural network.
        Biomed Res Int. 2016; 20163219068https://doi.org/10.1155/2016/3219068
        • Park HJ
        • Lee JM
        • Park SB
        • et al.
        Comparison of knowledge-based iterative model reconstruction and hybrid reconstruction techniques for liver CT evaluation of hypervascular hepatocellular carcinoma.
        J Comput Assist Tomogr. 2016; 40: 863-871https://doi.org/10.1097/RCT.0000000000000455
        • Afifi A
        • Nakaguchi T.
        Unsupervised detection of liver lesions in CT images.
        Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2015: 2411-2414https://doi.org/10.1109/EMBC.2015.7318880
        • Yan J
        • Schwartz LH
        • Zhao B.
        Semiautomatic segmentation of liver metastases on volumetric CT images.
        Med Phys. 2015; 42: 6283-6293
        • Hwang YN
        • Lee JH
        • Kim GY
        • et al.
        Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network.
        Biomed Mater Eng. 2015; 26 (Suppl): S1599-S1611https://doi.org/10.3233/BME-151459
        • Kadoury S
        • Vorontsov E
        • Tang A.
        Metastatic liver tumour segmentation from discriminant Grassmannian manifolds.
        Phys Med Biol. 2015; 60: 6459-6478https://doi.org/10.1088/0031-9155/60/16/6459
        • Huang W
        • Yang Y
        • Lin Z
        • et al.
        Random feature subspace ensemble based extreme learning machine for liver tumor detection and segmentation.
        Annu Int Conf IEEE Eng Med Biol Soc. 2014; 2014: 4675-4678https://doi.org/10.1109/EMBC.2014.6944667
        • Jiang H
        • Zheng R
        • Yi D
        • et al.
        A novel multiinstance learning approach for liver cancer recognition on abdominal CT images based on CPSO-SVM and IO.
        Comput Math Methods Med. 2013; 2013434969https://doi.org/10.1155/2013/434969
        • Singal AG
        • Mukherjee A
        • Elmunzer BJ
        • et al.
        Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma.
        Am J Gastroenterol. 2013; 108: 1723-1730https://doi.org/10.1038/ajg.2013.332
        • Huang W
        • Li N
        • Lin Z
        • et al.
        Liver tumor detection and segmentation using kernel-based Extreme Learning Machine.
        Annu Int Conf IEEE Eng Med Biol Soc. 2013; 2013: 3662-3665https://doi.org/10.1109/EMBC.2013.6610337
        • Zhou J
        • Huang W
        • Xiong W
        • et al.
        Segmentation of hepatic tumor from abdominal CT data using an improved support vector machine framework.
        Annu Int Conf IEEE Eng Med Biol Soc. 2013; 2013: 3347-3350https://doi.org/10.1109/EMBC.2013.6610258
        • Yang W
        • Lu Z
        • Yu M
        • et al.
        Content-based retrieval of focal liver lesions using bag-of-visual-words representations of single- and multiphase contrast-enhanced CT images.
        J Digit Imaging. 2012; 25: 708-719https://doi.org/10.1007/s10278-012-9495-1
        • Lin H
        • Wei C
        • Wang G
        • et al.
        Automated classification of hepatocellular carcinoma differentiation using multiphoton microscopy and deep learning.
        J Biophotonics. 2019; 12e201800435https://doi.org/10.1002/jbio.201800435
        • Pang W
        • Jiang H
        • Li S.
        Sparse Contribution Feature Selection and Classifiers Optimized by Concave-Convex Variation for HCC Image Recognition.
        Biomed Res Int. 2017; 20179718386https://doi.org/10.1155/2017/9718386
        • Li S
        • Jiang H
        • Pang W.
        Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.
        Comput Biol Med. 2017; 84: 156-167https://doi.org/10.1016/j.compbiomed.2017.03.017
        • Sorino P
        • Caruso MG
        • Misciagna G
        • et al.
        Selecting the best machine learning algorithm to support the diagnosis of non-alcoholic fatty liver disease: a meta learner study.
        PLoS One. 2020; 15e0240867https://doi.org/10.1371/journal.pone.0240867
        • Cotterill J
        • Price N
        • Rorije E
        • et al.
        Development of a QSAR model to predict hepatic steatosis using freely available machine learning tools.
        Food Chem Toxicol. 2020; 142111494https://doi.org/10.1016/j.fct.2020.111494
        • Garcia-Carretero R
        • Vigil-Medina L
        • Barquero-Perez O
        • et al.
        Relevant Features in Nonalcoholic Steatohepatitis Determined Using Machine Learning for Feature Selection.
        Metab Syndr Relat Disord. 2019; 17: 444-451https://doi.org/10.1089/met.2019.0052
        • Wu CC
        • Yeh WC
        • Hsu WD
        • et al.
        Prediction of fatty liver disease using machine learning algorithms.
        Comput Methods Programs Biomed. 2019; 170: 23-29https://doi.org/10.1016/j.cmpb.2018.12.032
        • Fialoke S
        • Malarstig A
        • Miller MR
        • et al.
        Application of machine learning methods to predict non-alcoholic steatohepatitis (NASH) in non-alcoholic fatty liver (NAFL) patients.
        AMIA Annu Symp Proc. 2018; 2018: 430-439
        • Ma H
        • Xu CF
        • Shen Z
        • et al.
        Application of machine learning techniques for clinical predictive modeling: a cross-sectional study on nonalcoholic fatty liver disease in China.
        Biomed Res Int. 2018; 20184304376https://doi.org/10.1155/2018/4304376
        • Yip TC
        • Ma AJ
        • Wong VW
        • et al.
        Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population.
        Aliment Pharmacol Ther. 2017; 46: 447-456https://doi.org/10.1111/apt.14172
        • Atabaki-Pasdar N
        • Ohlsson M
        • Viñuela A
        • et al.
        Predicting and elucidating the etiology of fatty liver disease: a machine learning modeling and validation study in the IMI DIRECT cohorts.
        PLoS Med. 2020; 17e1003149https://doi.org/10.1371/journal.pmed.1003149
        • Perakakis N
        • Polyzos SA
        • Yazdani A
        • et al.
        Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: a proof of concept study.
        Metabolism. 2019; 101154005https://doi.org/10.1016/j.metabol.2019.154005
        • Han A
        • Byra M
        • Heba E
        • et al.
        Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using one-dimensional convolutional neural networks.
        Radiology. 2020; 295: 342-350https://doi.org/10.1148/radiol.2020191160
        • Shi X
        • Ye W
        • Liu F
        • et al.
        Ultrasonic liver steatosis quantification by a learning-based acoustic model from a novel shear wave sequence.
        Biomed Eng Online. 2019; 18: 121https://doi.org/10.1186/s12938-019-0742-2
        • Graffy PM
        • Sandfort V
        • Summers RM
        • et al.
        Automated liver fat quantification at nonenhanced abdominal CT for population-based steatosis assessment.
        Radiology. 2019; 293: 334-342https://doi.org/10.1148/radiol.2019190512
        • Huo Y
        • Terry JG
        • Wang J
        • et al.
        Fully automatic liver attenuation estimation combing CNN segmentation and morphological operations.
        Med Phys. 2019; 46: 3508-3519https://doi.org/10.1002/mp.13675
        • Byra M
        • Styczynski G
        • Szmigielski C
        • et al.
        Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images.
        Int J Comput Assist Radiol Surg. 2018; 13: 1895-1903https://doi.org/10.1007/s11548-018-1843-2
        • Biswas M
        • Kuppili V
        • Edla DR
        • et al.
        Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm.
        Comput Methods Programs Biomed. 2018; 155: 165-177https://doi.org/10.1016/j.cmpb.2017.12.016
        • Redman JS
        • Natarajan Y
        • Hou JK
        • et al.
        Accurate identification of fatty liver disease in data warehouse utilizing natural language processing.
        Dig Dis Sci. 2017; 62: 2713-2718https://doi.org/10.1007/s10620-017-4721-9
        • Kuppili V
        • Biswas M
        • Sreekumar A
        • et al.
        Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization.
        J Med Syst. 2017; 41 (Erratum in: J Med Syst. 2017;42(1):18): 152https://doi.org/10.1007/s10916-017-0797-1
        • Acharya UR
        • Sree SV
        • Ribeiro R
        • et al.
        Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm.
        Med Phys. 2012; 39: 4255-4264https://doi.org/10.1118/1.4725759
        • Roy M
        • Wang F
        • Vo H
        • et al.
        Deep-learning-based accurate hepatic steatosis quantification for histological assessment of liver biopsies.
        Lab Invest. 2020; 100: 1367-1383https://doi.org/10.1038/s41374-020-0463-y
        • Vanderbeck S
        • Bockhorst J
        • Komorowski R
        • et al.
        Automatic classification of white regions in liver biopsies by supervised machine learning.
        Hum Pathol. 2014; 45: 785-792https://doi.org/10.1016/j.humpath.2013.11.011
        • Kanwal F
        • Taylor TJ
        • Kramer JR
        • et al.
        Development, validation, and evaluation of a simple machine learning model to predict cirrhosis mortality.
        JAMA Netw Open. 2020; 3e2023780https://doi.org/10.1001/jamanetworkopen.2020.23780
        • Emu M
        • Kamal FB
        • Choudhury S
        • et al.
        Assisting the non-invasive diagnosis of liver fibrosis stages using machine learning methods.
        Annu Int Conf IEEE Eng Med Biol Soc. 2020; 2020: 5382-5387https://doi.org/10.1109/EMBC44109.2020.9176542
        • Li Q
        • Yu B
        • Tian X
        • et al.
        Deep residual nets model for staging liver fibrosis on plain CT images.
        Int J Comput Assist Radiol Surg. 2020; 15: 1399-1406https://doi.org/10.1007/s11548-020-02206-y
        • Schawkat K
        • Ciritsis A
        • von Ulmenstein S
        • et al.
        Diagnostic accuracy of texture analysis and machine learning for quantification of liver fibrosis in MRI: correlation with MR elastography and histopathology.
        Eur Radiol. 2020; 30: 4675-4685https://doi.org/10.1007/s00330-020-06831-8
        • Xue LY
        • Jiang ZY
        • Fu TT
        • et al.
        Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis.
        Eur Radiol. 2020; 30: 2973-2983https://doi.org/10.1007/s00330-019-06595-w
        • Lee JH
        • Joo I
        • Kang TW
        • et al.
        Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network.
        Eur Radiol. 2020; 30: 1264-1273https://doi.org/10.1007/s00330-019-06407-1
        • He L
        • Li H
        • Dudley JA
        • et al.
        Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data.
        AJR Am J Roentgenol. 2019; 213: 592-601https://doi.org/10.2214/AJR.19.21082
        • Gatos I
        • Tsantis S
        • Spiliopoulos S
        • et al.
        Temporal stability assessment in shear wave elasticity images validated by deep learning neural network for chronic liver disease fibrosis stage assessment.
        Med Phys. 2019; 46: 2298-2309https://doi.org/10.1002/mp.13521
        • Li W
        • Huang Y
        • Zhuang BW
        • et al.
        Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis.
        Eur Radiol. 2019; 29: 1496-1506https://doi.org/10.1007/s00330-018-5680-z
        • Choi KJ
        • Jang JK
        • Lee SS
        • et al.
        Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced ct images in the liver.
        Radiology. 2018; 289: 688-697https://doi.org/10.1148/radiol.2018180763
        • Wei R
        • Wang J
        • Wang X
        • et al.
        Clinical prediction of HBV and HCV related hepatic fibrosis using machine learning.
        EBioMedicine. 2018; 35: 124-132https://doi.org/10.1016/j.ebiom.2018.07.041
        • Yasaka K
        • Akai H
        • Kunimatsu A
        • et al.
        Deep learning for staging liver fibrosis on CT: a pilot study.
        Eur Radiol. Nov 2018; 28: 4578-4585https://doi.org/10.1007/s00330-018-5499-7
        • Wang K
        • Lu X
        • Zhou H
        • et al.
        Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study.
        Gut. 2019; 68: 729-741https://doi.org/10.1136/gutjnl-2018-316204
        • Konerman MA
        • Lu D
        • Zhang Y
        • et al.
        Assessing risk of fibrosis progression and liver-related clinical outcomes among patients with both early stage and advanced chronic hepatitis C.
        PLoS One. 2017; 12e0187344https://doi.org/10.1371/journal.pone.0187344
        • Chen Y
        • Luo Y
        • Huang W
        • et al.
        Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B.
        Comput Biol Med. 2017; 89: 18-23https://doi.org/10.1016/j.compbiomed.2017.07.012
        • Hashem S
        • Esmat G
        • Elakel W
        • et al.
        Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients.
        IEEE/ACM Trans Comput Biol Bioinform. 2018; 15: 861-868https://doi.org/10.1109/TCBB.2017.2690848
        • Konerman MA
        • Beste LA
        • Van T
        • et al.
        Machine learning models to predict disease progression among veterans with hepatitis C virus.
        PLoS One. 2019; 14e0208141https://doi.org/10.1371/journal.pone.0208141
        • Liu X
        • Song JL
        • Wang SH
        • et al.
        Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification.
        Sensors (Basel). 2017; 17: 149https://doi.org/10.3390/s17010149
        • Lara J
        • López-Labrador F
        • González-Candelas F
        • et al.
        Computational models of liver fibrosis progression for hepatitis C virus chronic infection.
        BMC Bioinformatics. 2014; (15 Suppl 8Suppl): S5https://doi.org/10.1186/1471-2105-15-S8-S5
        • Chen YW
        • Luo J
        • Dong C
        • et al.
        Computer-aided diagnosis and quantification of cirrhotic livers based on morphological analysis and machine learning.
        Comput Math Methods Med. 2013; 2013264809https://doi.org/10.1155/2013/264809
        • Stoean R
        • Stoean C
        • Lupsor M
        • et al.
        Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C.
        Artif Intell Med. 2011; 51: 53-65https://doi.org/10.1016/j.artmed.2010.06.002
        • Vall A
        • Sabnis Y
        • Shi J
        • et al.
        The promise of AI for DILI prediction.
        Front Artif Intell. 2021; 4638410https://doi.org/10.3389/frai.2021.638410
        • Ferrarese A
        • Sartori G
        • Orrù G
        • et al.
        Machine learning in liver transplantation: a tool for some unsolved questions?.
        Transpl Int. 2021; 34: 398-411https://doi.org/10.1111/tri.13818
        • Bouter LM
        • Zielhuis GA
        • Zeeger MP
        Textbook of epidemiology. Netherlands: Bohn Stafleu van Loghum.
        2018
        • Salathé M.
        Digital epidemiology: what is it, and where is it going?.
        Life Sci Soc Policy. 2018; 14: 1https://doi.org/10.1186/s40504-017-0065-7
        • Infodemiology Eysenbach G.
        The epidemiology of (mis)information.
        Am J Med. 2002; 113: 763-765https://doi.org/10.1016/S0002-9343(02)01473-0
        • Rajan A
        • Sharaf R
        • Brown RS
        • et al.
        Association of search query interest in gastrointestinal symptoms with COVID-19 Diagnosis in the United States: infodemiology study.
        JMIR Public Heal Surveill. 2020; 6: e19354https://doi.org/10.2196/19354
        • Paguio JA
        • Yao JS
        • Dee EC.
        Silver lining of COVID-19: Heightened global interest in pneumococcal and influenza vaccines, an infodemiology study.
        Vaccine. 2020; 38: 5430-5435https://doi.org/10.1016/j.vaccine.2020.06.069
        • Eysenbach G.
        Infodemiology: tracking flu-related searches on the web for syndromic surveillance.
        AMIA Annu Symp Proc. 2006; 2006: 244-248
        • Mittelstadt B
        • Benzler J
        • Engelmann L
        • Prainsack B
        • Vayena E.
        Is there a duty to participate in digital epidemiology?.
        Life Sci Soc Policy. 2018; 14: 9https://doi.org/10.1186/s40504-018-0074-1
        • Zeraatkar K
        • Ahmadi M.
        Trends of infodemiology studies: a scoping review.
        Health Info Libr J. 2018; 35: 91-120https://doi.org/10.1111/hir.12216
        • Estes C
        • Razavi H
        • Loomba R
        • et al.
        Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.
        Hepatology. 2018; 67: 123-133https://doi.org/10.1002/hep.29466
        • Estes C
        • Anstee QM
        • Arias-Loste MT
        • et al.
        Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030.
        J Hepatol. 2018; 69: 896-904https://doi.org/10.1016/j.jhep.2018.05.036
        • Decharatanachart P
        • Chaiteerakij R
        • Tiyarattanachai T
        • et al.
        Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis.
        BMC Gastroenterol. 2021; 21: 10https://doi.org/10.1186/s12876-020-01585-5
        • Bossen L
        • Gerussi A
        • Lygoura V
        • et al.
        Support of precision medicine through risk-stratification in autoimmune liver diseases – histology, scoring systems, and non-invasive markers.
        Autoimmun Rev. 2018; 17: 854-865https://doi.org/10.1016/j.autrev.2018.02.013
        • Mulinacci G
        • Cristoferi L
        • Palermo A
        • et al.
        Risk stratification in primary sclerosing cholangitis.
        Minerva Gastroenterol Dietol. 2020; https://doi.org/10.23736/S1121-421X.20.02821-4
        • Eaton JE
        • Vesterhus M
        • McCauley BM
        • et al.
        Primary sclerosing cholangitis risk estimate tool (PREsTo) predicts outcomes of the disease: a derivation and validation study using machine learning.
        Hepatology. 2020; 71: 214-224https://doi.org/10.1002/hep.30085
        • Mousa OY
        • Juran BD
        • McCauley BM
        • et al.
        Bile acid profiles in primary sclerosing cholangitis and their ability to predict hepatic decompensation.
        Hepatology. 2020; https://doi.org/10.1002/hep.31652
        • Bertsimas D
        • Kung J
        • Trichakis N
        • et al.
        Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation.
        Am J Transplant. 2019; 19: 1109-1118https://doi.org/10.1111/ajt.15172
        • Lau L
        • Kankanige Y
        • Rubinstein B
        • et al.
        Machine-learning algorithms predict graft failure after liver transplantation.
        Transplantation. 2017; 101: e125-e132https://doi.org/10.1097/TP.0000000000001600
        • Rana A
        • Pallister ZS
        • Guiteau JJ
        • et al.
        Survival outcomes following pediatric liver transplantation (Pedi-SOFT) score: a novel predictive index.
        Am J Transplant. 2015; 15: 1855-1863https://doi.org/10.1111/ajt.13190
        • Briceño J
        • Cruz-Ramírez M
        • Prieto M
        • et al.
        Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: results from a multicenter Spanish study.
        J Hepatol. 2014; 61: 1020-1028https://doi.org/10.1016/j.jhep.2014.05.039
        • Dutkowski P
        • Oberkofler CE
        • Slankamenac K
        • et al.
        Are there better guidelines for allocation in liver transplantation?: A novel score targeting justice and utility in the model for end-stage liver disease era.
        Ann Surg. 2011; 254: 745-753https://doi.org/10.1097/SLA.0b013e3182365081
        • Sharma P
        • Schaubel DE
        • Guidinger MK
        • et al.
        Impact of MELD-based allocation on end-stage renal disease after liver transplantation.
        Am J Transplant. 2011; 11: 2372-2378https://doi.org/10.1111/j.1600-6143.2011.03703.x
        • Rajkomar A
        • Dean J
        • Kohane I.
        Machine learning in medicine.
        N Engl J Med. 2019; 380: 1347-1358https://doi.org/10.1056/NEJMra1814259
        • Fujiwara N
        • Qian T
        • Koneru B
        • et al.
        Omics-derived hepatocellular carcinoma risk biomarkers for precision care of chronic liver diseases.
        Hepatol Res. 2020; 50: 817-830https://doi.org/10.1111/hepr.13506
        • Perakakis N
        • Stefanakis K
        • Mantzoros CS.
        The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease.
        Metabolism. 2020; 111S154320https://doi.org/10.1016/j.metabol.2020.154320
        • Teufel A.
        Bioinformatics and database resources in hepatology.
        J Hepatol. 2015; 62: 712-719https://doi.org/10.1016/j.jhep.2014.10.036
        • Hasin Y
        • Seldin M
        • Lusis A.
        Multi-omics approaches to disease.
        Genome Biol. 2017; 18: 83https://doi.org/10.1186/s13059-017-1215-1
      1. Vujkovic M, Ramdas S, Lorenz KM, et al. A genome-wide association study for nonalcoholic fatty liver disease 1 identifies novel genetic loci and trait-relevant candidate genes in the 2 Million Veteran Program. 3. MedRxiv 2021. https://doi.org/10.1101/2020.12.26.20248491.

        • Eslam M
        • George J.
        Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology.
        Nat Rev Gastroenterol Hepatol. 2020; 17: 40-52https://doi.org/10.1038/s41575-019-0212-0
        • Raja G
        • Gupta H
        • Gebru YA
        • et al.
        Recent advances of microbiome-associated metabolomics profiling in liver disease: principles, mechanisms, and applications.
        Int J Mol Sci. 2021; 22: 1-18https://doi.org/10.3390/ijms22031160
        • Zmora N
        • Zeevi D
        • Korem T
        • et al.
        Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease.
        Cell Host Microbe. 2016; 19: 12-20https://doi.org/10.1016/j.chom.2015.12.016
        • Korem T
        • Zeevi D
        • Zmora N
        • et al.
        Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses.
        Cell Metab. 2017; 25: 1243-1253https://doi.org/10.1016/j.cmet.2017.05.002
        • Zeevi D
        • Korem T
        • Zmora N
        • et al.
        Personalized Nutrition by Prediction of Glycemic Responses.
        Cell. 2015; 163: 1079-1094https://doi.org/10.1016/j.cell.2015.11.001
        • Loomba R
        • Seguritan V
        • Li W
        • et al.
        Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease.
        Cell Metab. 2017; 25 (e5): 1054-1062https://doi.org/10.1016/j.cmet.2017.04.001
        • Caussy C
        • Tripathi A
        • Humphrey G
        • et al.
        A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease.
        Nat Commun. 2019; 10: 1406https://doi.org/10.1038/s41467-019-09455-9
        • Zhu B
        • Song N
        • Shen R
        • et al.
        Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers.
        Sci Rep. 2017; 7: 16954https://doi.org/10.1038/s41598-017-17031-8
        • Kohut TJ
        • Barandiaran JF
        • Keating BJ.
        Genomics and Liver Transplantation: Genomic Biomarkers for the Diagnosis of Acute Cellular Rejection.
        Liver Transplant. 2020; 26: 1337-1350https://doi.org/10.1002/lt.25812
        • Zhou LQ
        • Wang JY
        • Yu SY
        • et al.
        Artificial intelligence in medical imaging of the liver.
        World J Gastroenterol. 2019; 25: 672-682https://doi.org/10.3748/wjg.v25.i6.672
        • Kim SH
        • Kamaya A
        • Willmann JK.
        CT perfusion of the liver: Principles and applications in oncology.
        Radiology. 2014; 272: 322-344https://doi.org/10.1148/radiol.14130091
        • Mancini M
        • Summers P
        • Faita F
        • et al.
        Digital liver biopsy: bio-imaging of fatty liver for translational and clinical research.
        World J Hepatol. 2018; 10: 231-245https://doi.org/10.4254/wjh.v10.i2.231
        • Chen X
        • Nadiarynkh O
        • Plotnikov S
        • et al.
        Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure.
        Nat Protoc. 2012; 7: 654-669https://doi.org/10.1038/nprot.2012.009
        • Shen D
        • Wu G
        • Il Suk H
        Deep learning in medical image analysis.
        Annu Rev Biomed Eng. 2017; 19: 221-248https://doi.org/10.1146/annurev-bioeng-071516-044442
        • Hamamoto R
        • Suvarna K
        • Yamada M
        • et al.
        Application of artificial intelligence technology in oncology: towards the establishment of precision medicine.
        Cancers (Basel). 2020; 12: 3532https://doi.org/10.3390/cancers12123532
      2. European society of radiology (ESR).
        Insights Imaging. 2010; 1 (White paper on imaging biomarkers): 42-45https://doi.org/10.1007/s13244-010-0025-8
        • Collins FS
        • Varmus H.
        A new initiative on precision medicine.
        N Engl J Med. 2015; 372: 793-795https://doi.org/10.1056/nejmp1500523
        • Lee G
        • Lee HY
        • Ko ES
        • et al.
        Radiomics and imaging genomics in precision medicine.
        Precis Futur Med. 2017; 1: 10-31https://doi.org/10.23838/pfm.2017.00101
        • Il Jang W
        • SH Bae
        • Kim MS
        • et al.
        A phase 2 multicenter study of stereotactic body radiotherapy for hepatocellular carcinoma: Safety and efficacy.
        Cancer. 2020; 126: 363-372https://doi.org/10.1002/cncr.32502
        • Ibragimov B
        • Toesca D
        • Chang D
        • et al.
        Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT.
        Med Phys. 2018; 45: 4763-4774https://doi.org/10.1002/mp.13122
        • Yao Z
        • Dong Y
        • Wu G
        • et al.
        Preoperative diagnosis and prediction of hepatocellular carcinoma: radiomics analysis based on multi-modal ultrasound images.
        BMC Cancer. 2018; 18: 1089https://doi.org/10.1186/s12885-018-5003-4
        • Cai W
        • He B
        • Hu M
        • et al.
        A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma.
        Surg Oncol. 2019; 28: 78-85https://doi.org/10.1016/j.suronc.2018.11.013
        • Feng ST
        • Jia Y
        • Liao B
        • et al.
        Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.
        Eur Radiol. 2019; 29: 4648-4659https://doi.org/10.1007/s00330-018-5935-8
        • Hu HT
        • Wang Z
        • Huang XW
        • et al.
        Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma.
        Eur Radiol. 2019; 29: 2890-2901https://doi.org/10.1007/s00330-018-5797-0
        • Yao Z
        • Dong Y
        • Wu G
        • et al.
        Preoperative diagnosis and prediction of hepatocellular carcinoma: Radiomics analysis based on multi-modal ultrasound images.
        BMC Cancer. 2018; 18: 1089https://doi.org/10.1186/s12885-018-5003-4
        • Akai H
        • Yasaka K
        • Kunimatsu A
        • et al.
        Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest.
        Diagn Interv Imaging. 2018; 99: 643-651https://doi.org/10.1016/j.diii.2018.05.008
        • Cozzi L
        • Dinapoli N
        • Fogliata A
        • et al.
        Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy.
        BMC Cancer. 2017; 17: 829https://doi.org/10.1186/s12885-017-3847-7
        • Blanc-Durand P
        • Van Der Gucht A
        • Jreige M
        • et al.
        Signature of survival: A 18F-FDG PET based whole-liver radiomic analysis predicts survival after 90Y-TARE for hepatocellular carcinoma.
        Oncotarget. 2018; 9: 4549-4558https://doi.org/10.18632/oncotarget.23423
        • Alonso SG
        • de la Torre Díez I
        • Rodrigues JJPC
        • et al.
        A systematic review of techniques and sources of big data in the healthcare sector.
        J Med Syst. 2017; 41: 183https://doi.org/10.1007/s10916-017-0832-2
        • Ketchersid T.
        Big data in nephrology: Friend or foe?.
        Blood Purif. 2014; 36: 160-164https://doi.org/10.1159/000356751
        • Bellazzi R.
        Big data and biomedical informatics: a challenging opportunity.
        Yearb Med Inform. 2014; 9: 8-13https://doi.org/10.15265/IY-2014-0024
        • Raghupathi W
        • Raghupathi V.
        Big data analytics in healthcare: promise and potential.
        Heal Inf Sci Syst. 2014; 2: 3https://doi.org/10.1186/2047-2501-2-3
        • Reichstein M
        • Camps-Valls G
        • Stevens B
        • et al.
        Deep learning and process understanding for data-driven Earth system science.
        Nature. 2019; 566: 195-204https://doi.org/10.1038/s41586-019-0912-1
        • Taddei TH.
        Learning from the Melbourne experience: how reliable are cancer registry data for hepatocellular carcinoma?.
        Hepatology. 2016; 63: 1078-1079https://doi.org/10.1002/hep.28452
        • Tanaka T
        • Kurosaki M
        • Lilly LB
        • et al.
        Identifying candidates with favorable prognosis following liver transplantation for hepatocellular carcinoma: Data mining analysis.
        J Surg Oncol. 2015; 112: 72-79https://doi.org/10.1002/jso.23944
        • Auffray C
        • Balling R
        • Barroso I
        • et al.
        Making sense of big data in health research: Towards an EU action plan.
        Genome Med. 2016; 8: 71https://doi.org/10.1186/s13073-016-0323-y
        • Harford T.
        Big data: are we making a big mistake? | Financial Times.
        Financ Times. 2014;
        • Banafa A.
        Small data vs. big data : back to the basics.
        Datafloq, 2014
        • Carroll S
        • Goodstein D.
        Defining the scientific method.
        Nat Methods. 2009; 6: 237https://doi.org/10.1038/nmeth0409-237
        • Obermeyer Z
        • Lee TH.
        Lost in Thought - The Limits of the Human Mind and the Future of Medicine.
        N Engl J Med. 2017; 377 (PMID: 28953443; PMCID: PMC5754014): 1209-1211https://doi.org/10.1056/NEJMp1705348
        • Lehne M
        • Sass J
        • Essenwanger A
        • et al.
        Why digital medicine depends on interoperability.
        Npj Digit Med. 2019; 2: 79https://doi.org/10.1038/s41746-019-0158-1
        • Knight W.
        The dark secret at the heart of AI.
        Technol Rev. 2017;
        • Castelvecchi D.
        Can we open the black box of AI?.
        Nature. 2016; 538: 20-23https://doi.org/10.1038/538020a
        • Car J
        • Sheikh A
        • Wicks P
        • et al.
        Beyond the hype of big data and artificial intelligence: Building foundations for knowledge and wisdom.
        BMC Med. 2019; 17: 143https://doi.org/10.1186/s12916-019-1382-x
        • Ren Y
        • Leng Y
        • Zhu F
        • et al.
        Data Storage Mechanism Based on Blockchain with Privacy Protection in Wireless Body Area Network.
        Sensors (Basel). 2019; 19: 2395https://doi.org/10.3390/s19102395
        • Barrett LF
        • Adolphs R
        • Marsella S
        • et al.
        Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements.
        Psychol Sci Public Interes. 2019; 20: 1-68https://doi.org/10.1177/1529100619832930
        • Otto B
        • Jürjens J
        • Schon J
        • et al.
        White paper- industrial data space - digital sovereignty over data.
        Fraunhofer-Gesellschaft, München, Germany2016
        • Dodani S
        • LaPorte RE.
        Brain drain from developing countries: How can brain drain be converted into wisdom gain?.
        J R Soc Med. 2005; 98: 487-491https://doi.org/10.1258/jrsm.98.11.487
        • Kelnar D
        • Kostadinov A
        The state of AI 2019.
        MMC Ventures, London, United Kingdom2019
        • Masood A
        • AA Al-Jumaily
        Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms.
        Int J Biomed Imaging. 2013; 2013323268https://doi.org/10.1155/2013/323268
        • Cabitza F
        • Rasoini R
        • Gensini GF.
        Unintended consequences of machine learning in medicine.
        JAMA - J Am Med Assoc. 2017; 318: 517-518https://doi.org/10.1001/jama.2017.7797