Advertisement
Alimentary Tract| Volume 53, ISSUE 8, P972-979, August 2021

Download started.

Ok

Relationship between duodenal microbiota composition, clinical features at diagnosis, and persistent symptoms in adult Coeliac disease

Published:March 16, 2021DOI:https://doi.org/10.1016/j.dld.2021.02.019

      Abstract

      Background

      Duodenal dysbiosis has been suggested to possibly influence the clinical manifestations of coeliac disease (CD), both at onset and when symptoms persist despite a gluten-free diet (GFD).

      AIMS

      To evaluate the relationship between duodenal microbiota composition and: i) clinical phenotype of untreated CD (UCD); ii) presence and type of persistent symptoms despite a satisfactory serological and histological response to a strict GFD.

      Methods

      Duodenal microbiota was analyzed by 16S rRNA sequencing and compared with i) clinical features in 12 adult UCD patients; ii) presence/absence and type of persistent symptoms (diarrhea-predominant vs. non-diarrhea predominant) in 25 adult treated coeliac patients (TCD) on a strict GFD.

      Results

      UCD with iron deficiency anemia (IDA) had a pro-inflammatory shift in their duodenal microbiota (reduction of Firmicutes, p = 0.03; increase of beta-Proteobacteria, p = 0.02) than those without IDA. TCD with persistent diarrhea showed a reduction of Actinobacteria (p = 0.03) and Rothia spp (p = 0.046) compared to TCD suffering from other type of persistent symptoms.

      Conclusion

      A distinctive duodenal microbiota profile is associated with IDA in UCD, and diarrhea-predominant persistent symptoms in TCD. Clinical interventions may include reconsidering patients presenting with IDA as a specific disease subtype, and dietary rebalancing if diarrhea persists despite histological response to a GFD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lebwohl B.
        • Sanders D.S.
        • Green P.H.R.
        Coeliac disease.
        Lancet. 2018; 391: 70-81
        • Singh P.
        • Arora A.
        • Strand T.A.
        • et al.
        Global prevalence of coeliac disease: systematic review and meta-analysis.
        Clin Gastroenterol Hepatol. 2018; 16: 823-836
        • Ludvigsson J.F.
        • Leffler D.A.
        • Bai J.C.
        • et al.
        The Oslo definitions for coeliac disease and related terms.
        Gut. 2013; 62: 43-52
        • Schiepatti A.
        • Sprio E.
        • Sanders D.S.
        • et al.
        Coeliac disease and obstetric and gynaecological disorders: where are we now?.
        Eur J Gastroenterol Hepatol. 2019; 31: 425-433
        • Trovato C.M.
        • Raucci U.
        • Valitutti F.
        • et al.
        Neuropsychiatric manifestations in celiac disease.
        Epilepsy Behav. 2019; 99106393
        • Salmi T.T.
        Dermatitis herpetiformis.
        Clin Exp Dermatol. 2019; 44: 728-731
        • Fasano A.
        • Berti I.
        • Gerarduzzi T.
        • et al.
        Prevalence of coeliac disease in at-risk and not-at-risk groups in the United States: a large multicenter study.
        Arch Intern Med. 2003; 163: 286-292
        • Leffler D.A.
        • Dennis M.
        • Hyett B.
        • et al.
        Etiologies and predictors of diagnosis in nonresponsive coeliac disease.
        Clin Gastroenterol Hepatol. 2007; 5: 445-450
        • Abdulkarim A.S.
        • Burgart L.J.
        • See J.
        • et al.
        Etiology of nonresponsive coeliac disease: results of a systematic approach.
        Am J Gastroenterol. 2002; 97: 2016-2021
        • Penny H.A.
        • Baggus E.M.R.
        • Rej A.
        • et al.
        Non-responsive coeliac disease: a comprehensive review from the NHS England National Centre for Refractory Coeliac Disease.
        Nutrients. 2020; 12: 216
        • Paarlahti P.
        • Kurppa K.
        • Ukkola A.
        • et al.
        Predictors of persistent symptoms and reduced quality of life in treated coeliac disease patients: a large cross-sectional study.
        BMC Gastroenterol. 2013; 13: 75
        • Biagi F.
        • Schiepatti A.
        • Maiorano G.
        • et al.
        Risk of complications in coeliac patients depends on age at diagnosis and type of clinical presentation.
        Dig Liver Dis. 2018; 50: 549-552
        • Murray J.A.
        • Rubio-Tapia A.
        • Van Dyke C.T.
        • et al.
        Mucosal atrophy in coeliac disease: extent of involvement, correlation with clinical presentation, and response to treatment.
        Clin Gastroenterol Hepatol. 2008; 6: 186-193
        • Caminero A.
        • Verdu E.F.
        Coeliac disease: should we care about microbes?.
        Am J Physiol Gastrointest Liver Physiol. 2019; 317: G161-G170
        • Nistal E.
        • Caminero A.
        • Vivas S.
        • et al.
        Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and coeliac disease patients.
        Biochimie. 2012; 94: 1724-1729
        • Nistal E.
        • Caminero A.
        • Herrán A.R.
        • et al.
        Differences of small intestinal bacteria populations in adults and children with/without coeliac disease: effect of age, gluten diet, and disease.
        Inflamm Bowel Dis. 2012; 18: 649-656
        • Wacklin P.
        • Kaukinen K.
        • Tuovinen E.
        • et al.
        The duodenal microbiota composition of adult coeliac disease patients is associated with the clinical manifestation of the disease.
        Inflamm Bowel Dis. 2013; 19: 934-941
        • Wacklin P.
        • Laurikka P.
        • Lindfors K.
        • et al.
        Altered duodenal microbiota composition in coeliac disease patients suffering from persistent symptoms on a long-term gluten-free diet.
        Am J Gastroenterol. 2014; 109: 1933-1941
        • D'Argenio V.
        • Casaburi G.
        • Precone V.
        • et al.
        Metagenomics reveals dysbiosis and a potentially pathogenic n. flavescens strain in duodenum of adult coeliac patients.
        Am J Gastroenterol. 2016; 111: 879-890
        • Nistal E.
        • Caminero A.
        • Herrán A.R.
        • et al.
        Study of duodenal bacterial communities by 16S rRNA gene analysis in adults with active coeliac disease vs non-coeliac disease controls.
        J Appl Microbiol. 2016; 120: 1691-1700
        • Bodkhe R.
        • Shetty S.A.
        • Dhotre D.P.
        • et al.
        Comparison of small gut and whole gut microbiota of first-degree relatives with adult coeliac disease patients and controls.
        Front Microbiol. 2019; 10: 164
        • Panelli S.
        • Capelli E.
        • Lupo G.F.D.
        • et al.
        Comparative study of salivary, duodenal, and fecal microbiota composition across adult coeliac Disease.
        J Clin Med. 2020; 9: 1109
        • Schiepatti A.
        • Sanders D.S.
        • Biagi F.
        Seronegative coeliac disease: clearing the diagnostic dilemma.
        Curr Opin Gastroenterol. 2018; 34: 154-158
        • Corazza G.R.
        • Villanacci V.
        • Zambelli C.
        • et al.
        Comparison of the interobserver reproducibility with different histologic criteria used in coeliac disease.
        Clin Gastroenterol Hepatol. 2007; 5: 838-843
        • Biagi F.
        • Bianchi P.I.
        • Marchese A.
        • et al.
        A score that verifies adherence to a gluten-free diet: a cross-sectional, multicentre validation in real clinical life.
        Br J Nutr. 2012; 108: 1884-1888
        • Biagi F.
        • Pezzimenti D.
        • Campanella J.
        • et al.
        Endomysial and tissue transglutaminase antibodies in coeliac sera: a comparison not influenced by previous serological testing.
        Scand J Gastroenterol. 2001; 36: 955-958
        • Olerup O.
        • Zetterquist H.
        HLA-DRB1×01 subtyping by allele-specific PCR amplification: a sensitive, specific and rapid technique.
        Tissue Antigens. 1991; 37: 197-204
        • Sollid L.M.
        • Lie B.A.
        Coeliac disease genetics: current concepts and practical applications.
        Clin Gastroenterol Hepatol. 2005; 3: 843-851
        • Yuan S.
        • Cohen D.B.
        • Ravel J.
        • et al.
        2012. Evaluation of methods for the extraction and purification of DNA from the human microbiome.
        PLoS ONE. 2012; 7: e33865
        • Takahashi S.
        • Tomita J.
        • Nishioka K.
        • et al.
        Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing.
        PLoS ONE. 2014; 9e105592
        • DeSantis T.Z.
        • Hugenholtz P.
        • Larsen N.
        • et al.
        Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.
        Appl Environ Microbiol. 2006; 72: 5069-5072
        • Frank D.N.
        • St Amand A.L.
        • Feldman R.A.
        • et al.
        Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
        Proc Natl Acad Sci USA. 2007; 104: 13780-13785
        • Bessman N.J.
        • Mathieu J.R.R.
        • Renassia C.
        • et al.
        Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing.
        Science. 2020; 368: 186-189
        • Zamakhchari M.
        • Wei G.
        • Dewhirst F.
        • et al.
        Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract.
        PLoS ONE. 2011; 6: e24455
        • Wei G.
        • Tian N.
        • Siezen R.
        • et al.
        Identification of food-grade subtilisins as gluten-degrading enzymes to treat coeliac disease.
        Am J Physiol Gastrointest Liver Physiol. 2016; 311: G571-G580
        • Schiepatti A.
        • Bellani V.
        • Perlato M.
        • et al.
        Inadvertent and minimal gluten intake has a negligible role in the onset of symptoms in patients with coeliac disease on a gluten-free diet.
        Br J Nutr. 2018; : 1-23
        • Yang M.
        • Sun B.
        • Li J.
        • et al.
        Alteration of the intestinal flora may participate in the development of Graves' disease: a study conducted among the Han population in southwest China.
        Endocr Connect. 2019; 8: 822-828
        • Chen W.
        • Liu F.
        • Ling Z.
        • et al.
        Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer.
        PLoS ONE. 2012; 7: e39743
        • Dafar A.
        • Bankvall M.
        • Çevik-Aras H.
        • et al.
        Lingual microbiota profiles of patients with geographic tongue.
        J Oral Microbiol. 2017; 91355206
        • Olivares M.
        • Neef A.
        • Castillejo G.
        • et al.
        The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease.
        Gut. 2015; 64: 406-417
        • Olivares M.
        • Benítez-Páez A.
        • de Palma G.
        • et al.
        Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing coeliac disease: the PROFICEL study.
        Gut Microbes. 2018; 9: 551-558
        • Leonard M.M.
        • Karathia H.
        • Pujolassos M.
        • et al.
        Multi-omics analysis reveals the influence of genetic and environmental risk factors on developing gut microbiota in infants at risk of celiac disease.
        Microbiome. 2020; 8: 130
        • Jovel J.
        • Patterson J.
        • Wang W.
        • et al.
        Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics.
        Front Microbiol. 2016; 7: 459
        • Hillmann B.
        • Al-Ghalith G.A.
        • Shields-Cutler R.R.
        • et al.
        Evaluating the Information Content of Shallow Shotgun Metagenomics.
        mSystems. 2018; 3 (-18): e00069