Abstract
Background
Observation of the entire stomach during esophagogastroduodenoscopy (EGD) is important;
however, there is a lack of effective evaluation tools.
Aims
To develop an artificial intelligence (AI)-assisted EGD system able to automatically
monitor blind spots in real-time.
Methods
An AI-based system, called the Intelligent Detection Endoscopic Assistant (IDEA),
was developed using a deep convolutional neural network (DCNN) and long short-term
memory (LSTM). The performance of IDEA for recognition of gastric sites in images
and videos was evaluated. Primary outcomes included diagnostic accuracy, sensitivity,
and specificity.
Results
A total of 170,297 images and 5779 endoscopic videos were collected to develop the
system. As the test group, 3100 EGD images were acquired to evaluate the performance
of DCNN in recognition of gastric sites in images. The sensitivity, specificity, and
accuracy of DCNN were determined as 97.18%,99.91%, and 99.83%, respectively. To assess
the performance of IDEA in recognition of gastric sites in EGD videos, 129 videos
were used as the test group. The sensitivity, specificity, and accuracy of IDEA were
96.29%,93.32%, and 95.30%, respectively.
Conclusions
IDEA achieved high accuracy for recognition of gastric sites in real-time. The system
can be applied as a powerful assistant tool for monitoring blind spots during EGD.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Digestive and Liver DiseaseAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Longer examination time improves detection of gastric cancer during diagnostic upper gastrointestinal endoscopy.Clin Gastroenterol Hepatol. 2015; 13: 480-487
- Quality in gastrointestinal endoscopy.Endoscopy. 2014; 46: 526-528
- Diagnosis of gastric cancer up to three years after negative upper gastrointestinal endoscopy.Endoscopy. 1998; 30: 669-674
- Performance measures for upper gastrointestinal endoscopy: a European society of gastrointestinal endoscopy (ESGE) quality improvement initiative.Endoscopy. 2016; 48: 843-864
- The endoscopic diagnosis of early gastric cancer.Ann Gastroenterol. 2013; 26: 11-22
- Quality assurance in gastrointestinal endoscopy.Endoscopy. 2000; 32: 483-488
- Dermatologist-level classification of skin cancer with deep neural networks.Nature. 2017; 542: 115-118
- Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.Gastric Cancer. 2018; 21: 653-660
- Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model.Gut. 2019; 68: 94-100
- Long short-term memory.Neural Comput. 1997; 9: 1735-1780
- Improving the endoscopic detection rate in patients with early gastric cancer.Clin Endosc. 2015; 48: 291-296
- Development of an e-learning system for teaching endoscopists how to diagnose early gastric cancer: basic principles for improving early detection.Gastric Cancer. 2017; 20: 28-38
- Endoscopic photography and image documentation.Gastrointest Endosc. 2015; 82: 925-931
- A modified endoscopic submucosal dissection for a superficial hypopharyngeal cancer: a case report and technical discussion.BMC Cancer. 2017; 17: 712
- Clinical features of pharyngeal intraepithelial neoplasias and outcomes of treatment by endoscopic submucosal dissection.Gastrointest Endosc. 2012; 76: 1095-1103
- Endoscopic mucosal resection and endoscopic submucosal dissection for en bloc resection of superficial pharyngeal carcinomas.Endoscopy. 2012; 44: 556-564
- Long-term outcome of transoral organ-preserving pharyngeal endoscopic resection for superficial pharyngeal cancer.Gastrointest Endosc. 2011; 74: 477-484
- Difference in accuracy between gastroscopy and colonoscopy for detection of cancer.Hepatogastroenterology. 2007; 54: 442-444
- A lesion-based convolutional neural network improves endoscopic detection and depth prediction of early gastric cancer.J Clin Med. 2019; 8: 1310
- Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy.Gastrointest Endosc. 2019; 89: 806-815
- Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging.Dig Dis Sci. 2020; 65: 1355-1363
- Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging.Gastric Cancer. 2020; 23: 126-132
- Endoscopic detection and differentiation of esophageal lesions using a deep neural network.Gastrointest Endosc. 2019; 91: 301-309
- Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video).Gastrointest Endosc. 2019; 90: 745-753
- Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis.J Clin Med. 2019; 8: 986
- A deep neural network improves endoscopic detection of early gastric cancer without blind spots.Endoscopy. 2019; 51: 522-531
- Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial.Gastrointest Endosc. 2020; 91: 332-339
- Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy.Gut. 2019; 68: 2161-2169
- Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas.AJNR Am J Neuroradiol. 2018; 39: 1201-1207
Article info
Publication history
Published online: November 30, 2020
Accepted:
November 16,
2020
Received:
August 24,
2020
Identification
Copyright
© 2020 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.