Advertisement

IBDs and the pediatric age: Their peculiarities and the involvement of the microbiota

Published:November 11, 2020DOI:https://doi.org/10.1016/j.dld.2020.10.033

      Abstract

      Inflammatory Bowel Diseases (IBDs) are gastrointestinal disorders characterized by chronic, relapsing inflammation, with growing incidence worldwide over the last decades and distinctive features in the pediatric age. An increasing body of evidence indicates that gut microbiota plays a major role in inflammatory disorders, including IBDs. In this review we will discuss the most recent evidences on dysbiotic changes associated with gut inflammation, as well as environmental and genetic factors contributing to IBD pathogenesis, with a focus on the peculiarities of the pediatric age.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Qin J.
        • Li R.
        • Raes J.
        • Arumugam M.
        • et al.
        A human gut microbial gene catalogue established by metagenomic sequencing.
        Nature. 2010; 464: 59-65
        • Thomas T.
        • Gilbert J.
        • Meyer F
        Metagenomics - a guide from sampling to data analysis.
        Microb Inform Exp. 2012; 2: 3
        • Rinninella E.
        • Raoul P.
        • Cintoni M.
        • et al.
        What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases.
        Microorganisms. 2019; 7: 14
        • Lozupone C.A.
        • Stombaugh J.I.
        • Gordon J.I.
        Diversity, stability and resilience of the human gut microbiota.
        Nature. 2012; 489: 220-230
        • Lynch S V.
        • Pedersen O.
        The human intestinal microbiome in health and disease.
        N Engl J Med. 2016; 375: 2369-2379
        • Selber-Hnativ S.
        • Rukundo B.
        • Ahmadi M.
        • et al.
        Human gut microbiota: toward an ecology of disease.
        Front Microbiol. 2017; 8: 1265
        • Tamboli C.P.
        • Neut C.
        • Desreumaux P.
        • et al.
        Dysbiosis in inflammatory bowel disease.
        Gut. 2004; 53: 1-4
        • Xavier R.J.
        • Podolsky D.K.
        Unravelling the pathogenesis of inflammatory bowel disease.
        Nature. 2007; 448: 427-434
        • Caruso R.
        • Lo B.C.
        • Núñez G
        Host-microbiota interactions in inflammatory bowel disease.
        Nat Rev Immunol. 2020; 20: 411-426
        • Wang S.L.
        • Wang Z.R.
        • Yang C.Q
        Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease.
        Exp Ther Med. 2012; 4: 1051-1056
        • McClave S.A.
        • Lowen C.C.
        • Martindale R.G
        The 2016 ESPEN Arvid Wretlind lecture: the gut in stress.
        Clin Nutr. 2018; 37: 19-36
        • Negroni A.
        • Colantoni E.
        • Vitali R.
        • et al.
        NOD2 induces autophagy to control AIEC bacteria infectiveness in intestinal epithelial cells.
        Inflamm Res. 2016; 65: 803-813
        • Zhou M.
        • He J.
        • Shen Y.
        • Zhang C.
        • et al.
        New frontiers in genetics, gut microbiota, and immunity: a rosetta stone for the pathogenesis of inflammatory bowel disease.
        Biomed Res Int. 2017; 20178201672
        • Imhann F.
        • Vich Vila A.
        • Bonder M.J.
        • et al.
        Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease.
        Gut. 2018; 67: 108-119
        • Franzosa E.A.
        • Sirota-Madi A.
        • Avila-Pacheco J.
        • et al.
        Gut microbiome structure and metabolic activity in inflammatory bowel disease.
        Nat Microbiol. 2019; 4: 293-305
        • Lloyd-Price J.
        • Arze C.
        • Ananthakrishnan A.N.
        • et al.
        Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases.
        Nature. 2019; 569: 655-662
        • Strachan D.P.
        Hay fever, hygiene, and household size.
        Br Med J. 1989; 299: 1259-1260
        • Doecke J.D.
        • Simms L.A.
        • Zhao Z.Z.
        • et al.
        Genetic susceptibility in IBD: overlap between ulcerative Colitis and Crohn's disease.
        Inflamm Bowel Dis. 2013; 19: 240-245
        • Graham D.B.
        • Xavier R.J.
        Pathway paradigms revealed from the genetics of inflammatory bowel disease.
        Nature. 2020; 578: 527-539
        • Negroni A.
        • Stronati L.
        • Pierdomenico M.
        • et al.
        Activation of NOD2-mediated intestinal pathway in a pediatric population with Crohn's disease.
        Inflamm Bowel Dis. 2009; 15: 1145-1154
        • Yamamoto S.
        • Ma X.
        Role of Nod2 in the development of Crohn's disease.
        Microbes Infect. 2009; 11: 912-918
        • Hong J.
        • Yang H.R.
        • Moon J.S.
        • et al.
        Association of IL23R variants with Crohn's disease in Korean children.
        Front Pediatr. 2019; 7: 472
        • Goodrich J.K.
        • Waters J.L.
        • Poole A.C.
        • et al.
        Human genetics shape the gut microbiome.
        Cell. 2014; 159: 789-799
        • Corrêa-Oliveira R.
        • Fachi J.L.
        • Vieira A.
        • et al.
        Regulation of immune cell function by short-chain fatty acids.
        Clin Transl Immunol. 2016; 5: e73
        • Ni J.
        • Wu G.D.
        • Albenberg L.
        • et al.
        Gut microbiota and IBD: causation or correlation?.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 573-584
        • Kostic A.D.
        • Xavier R.J.
        • Gevers D
        The microbiome in inflammatory bowel disease: current status and the future ahead.
        Gastroenterology. 2014; 146: 1489-1499
        • Negroni A.
        • Costanzo M.
        • Vitali R.
        • et al.
        Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease.
        Inflamm Bowel Dis. 2012; 18: 913-924
        • Kugathasan S.
        • Judd R.H.
        • Hoffmann R.G.
        • et al.
        Epidemiologic and clinical characteristics of children with newly diagnosed inflammatory bowel disease in Wisconsin: a statewide population-based study.
        J Pediatr. 2003; 143: 525-531
        • BINDER V.
        Epidemiology of IBD during the twentieth century: an integrated view.
        Best Pract Res Clin Gastroenterol. 2004; 18: 463-479
        • Sýkora J.
        • Pomahačová R.
        • Kreslová M.
        • et al.
        Current global trends in the incidence of pediatric-onset inflammatory bowel disease.
        World J Gastroenterol. 2018; 24: 2741-2763
        • Ng S.C.
        • Shi H.Y.
        • Hamidi N.
        • et al.
        Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.
        Lancet. 2017; 390: 2769-2778
        • Ong C.
        • Aw M.M.
        • Liwanag M.J.
        • et al.
        Rapid rise in the incidence and clinical characteristics of pediatric inflammatory bowel disease in a South-East Asian cohort in Singapore, 1994–2015.
        J Dig Dis. 2018; 19: 395-403
        • Moon J.S.
        Clinical aspects and treatments for pediatric inflammatory bowel diseases.
        Pediatr Gastroenterol Hepatol Nutr. 2019; 22: 50-56
        • Nieuwenhuis E.E.S.
        • Escher J.C.
        Early onset IBD: what's the difference?.
        Dig Liver Dis. 2008; 40: 12-15
        • Van Limbergen J.
        • Russell R.K.
        • Drummond H.E.
        • et al.
        Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease.
        Gastroenterology. 2008; 135: 1114-1122
        • Pigneur B.
        • Seksik P.
        • Viola S.
        • et al.
        Natural history of Crohn's disease: comparison between childhood- and adult-onset disease.
        Inflamm Bowel Dis. 2010; 16: 953-961
        • Turner D.
        • Muise A.M
        Very early onset IBD: how very different “on average”?.
        J Crohns Colitis. 2017; 11: 517-518
        • Uhlig H.H.
        • Schwerd T.
        • Koletzko S.
        • et al.
        The diagnostic approach to monogenic very early onset inflammatory bowel disease.
        Gastroenterology. 2014; 147 (e3): 990-1007
        • Heyman M.B.
        • Kirschner B.S.
        • Gold B.D.
        • et al.
        Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry.
        J Pediatr. 2005; 146: 35-40
        • Uhlig H.H.
        Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease.
        Gut. 2013; 62: 1795-1805
        • Kelsen J.R.
        • Sullivan K.E.
        Inflammatory bowel disease in primary immunodeficiencies.
        Curr Allergy Asthma Rep. 2017; 17: 57
        • Tegtmeyer D.
        • Seidl M.
        • Gerner P.
        • et al.
        Inflammatory bowel disease caused by primary immunodeficiencies—Clinical presentations, review of literature, and proposal of a rational diagnostic algorithm.
        Pediatr Allergy Immunol. 2017; 28: 412-429
        • Hartono S.
        • Ippoliti M.R.
        • Mastroianni M.
        • et al.
        Gastrointestinal disorders associated with primary immunodeficiency diseases.
        Clin Rev Allergy Immunol. 2019; 57: 145-165
        • Shim J.O.
        Recent advance in very early-onset inflammatory bowel disease.
        Intest Res. 2019; 17: 9-16
        • Hugot J.P.
        • Chamaillard M.
        • Zouali H.
        • et al.
        Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.
        Nature. 2001; 411: 599-603
        • Hampe J.
        • Cuthbert A.
        • Croucher P.J.P.
        • et al.
        Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations.
        Lancet. 2001; 357: 1925-1928
        • Mo J.
        • Boyle J.P.
        • Howard C.B.
        • et al.
        Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP.
        J Biol Chem. 2012; 287: 23057-23067
        • Bequet E.
        • Sarter H.
        • Fumery M.
        • et al.
        Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a population-based study [1988-2011.
        J Crohns Colitis. 2017; 11: 519-526
        • Pittayanon R.
        • Lau J.T.
        • Leontiadis G.I.
        • et al.
        Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review.
        Gastroenterology. 2020; 158 (e1): 930-946
        • Rook G.A.W
        Hygiene hypothesis and autoimmune diseases.
        Clin Rev Allergy Immunol. 2012; 42: 5-15
        • Putignani L.
        • Del Chierico F.
        • Vernocchi P.
        • et al.
        Gut microbiota dysbiosis as risk and premorbid factors of IBD and IBS along the childhood-adulthood transition.
        Inflamm Bowel Dis. 2016; 22: 487-504
        • Rodríguez J.M.
        • Murphy K.
        • Stanton C.
        • et al.
        The composition of the gut microbiota throughout life, with an emphasis on early life.
        Microb Ecol Heal Dis. 2015; 26: 26050
        • Del Chierico F.
        • Vernocchi P.
        • Bonizzi L.
        • et al.
        Early-life gut microbiota under physiological and pathological conditions: the central role of combined meta-omics-based approaches.
        J Proteomics. 2012; 75: 4580-4587
        • Gosalbes M.J.
        • Llop S.
        • Vallès Y.
        • et al.
        Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants.
        Clin Exp Allergy. 2013; 43: 198-211
        • Jiménez E.
        • Marín M.L.
        • Martín R.
        • et al.
        Is meconium from healthy newborns actually sterile?.
        Res Microbiol. 2008; 159: 187-193
        • Perez-Muñoz M.E.
        • Arrieta M.C.
        • Ramer-Tait A.E.
        • et al.
        A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome.
        Microbiome. 2017; 5: 48
        • Mshvildadze M.
        • Neu J.
        The infant intestinal microbiome: friend or foe?.
        Early Hum Dev. 2010; 86 (Suppl 1): 67-71
        • Adkins B.
        • Du R.Q.
        Newborn mice develop balanced Th1/Th2 primary effector responses in vivo but are biased to Th2 secondary responses.
        J Immunol. 1998; 160: 4217-4224
        • Bach J.F.
        The effect of infections on susceptibility to autoimmune and allergic diseases.
        N Engl J Med. 2002; 347: 911-920
        • Liu A.H.
        • Leung D.Y.M.
        Renaissance of the hygiene hypothesis.
        J Allergy Clin Immunol. 2006; 117: 1063-1066
        • Tamburini S.
        • Shen N.
        • Wu H.C.
        • et al.
        The microbiome in early life: implications for health outcomes.
        Nat Med. 2016; 22: 713-722
        • Glassner K.L.
        • Abraham B.P.
        • Quigley E.M.M
        The microbiome and inflammatory bowel disease.
        J Allergy Clin Immunol. 2020; 145: 16-27
        • Harper P.H.
        • Lee E.C.
        • Kettlewell M.G.W.
        • et al.
        Role of the faecal stream in the maintenance of Crohn's colitis.
        Gut. 1985; 26: 279-284
        • Rutgeerts P.
        • Peeters M.
        • Hiele M.
        • et al.
        Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum.
        Lancet. 1991; 338: 771-774
        • Ricciuto A.
        • Sherman P.M.
        • Laxer R.M
        Gut microbiota in chronic inflammatory disorders: a focus on pediatric inflammatory bowel diseases and juvenile idiopathic arthritis.
        Clin Immunol. 2020; 215108415
        • Lane E.R.
        • Zisman T.L.
        • Suskind D.L
        The microbiota in inflammatory bowel disease: current and therapeutic insights.
        J Inflamm Res. 2017; 10: 63-73
        • Morgan X.C.
        • Tickle T.L.
        • Sokol H.
        • et al.
        Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment.
        Genome Biol. 2012; 13: R79
        • Frank D.N.
        • St. Amand A.L.
        • Feldman R.A.
        • et al.
        Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
        Proc Natl Acad Sci U S A. 2007; 104: 13780-13785
        • Haberman Y.
        • Tickle T.
        • Dexheimer P.
        • et al.
        Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature.
        J Clin Invest. 2014; 124: 3617-3633
        • Ott S.J.
        • Musfeldt M.
        • Wenderoth D.F.
        • et al.
        Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease.
        Gut. 2004; 53: 685-693
        • Sokol H.
        • Pigneur B.
        • Watterlot L.
        • et al.
        Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients.
        Proc Natl Acad Sci U S A. 2008; 105: 16731-16736
        • Manichanh C.
        • Rigottier-Gois L.
        • Bonnaud E.
        • et al.
        Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach.
        Gut. 2006; 55: 205-211
        • Lupp C.
        • Robertson M.L.
        • Wickham M.E.
        • et al.
        Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae.
        Cell Host Microbe. 2007; 2: 119-129
        • Michail S.
        • Durbin M.
        • Turner D.
        • et al.
        Alterations in the gut microbiome of children with severe ulcerative colitis.
        Inflamm Bowel Dis. 2012; 18: 1799-1808
        • Gutiérrez A.
        • Holler E.
        • Zapater P.
        • et al.
        Antimicrobial peptide response to blood translocation of bacterial DNA in Crohn's disease is affected by NOD2/CARD15 genotype.
        Inflamm Bowel Dis. 2011; 17: 1641-1650
        • Gutiérrez A.
        • Scharl M.
        • Sempere L.
        • et al.
        Genetic susceptibility to increased bacterial translocation influences the response to biological therapy in patients with Crohn's disease.
        Gut. 2014; 63: 272-280
        • Chan S.S.M.
        • Watson A.J.M.
        Bacterial translocation influences the response to biological therapy in Crohn's disease.
        Gastroenterology. 2013;
        • Pascal V.
        • Pozuelo M.
        • Borruel N.
        • et al.
        A microbial signature for Crohn's disease.
        Gut. 2017; 66: 813-822
        • Gevers D.
        • Kugathasan S.
        • Denson L.A.
        • et al.
        The treatment-naive microbiome in new-onset Crohn's disease.
        Cell Host Microbe. 2014; 15: 382-392
        • Kugathasan S.
        • Denson L.A.
        • Walters T.D.
        • et al.
        Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study.
        Lancet. 2017; 389: 1710-1718
        • Machiels K.
        • Joossens M.
        • Sabino J.
        • De Preter V.
        • Arijs I.
        • Eeckhaut V.
        • et al.
        A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis.
        Gut. 2014; 63: 1275-1283
        • Olbjørn C.
        • Småstuen M.C.
        • Thiis-Evensen E.
        • et al.
        Fecal microbiota profiles in treatment-naïve pediatric inflammatory bowel disease – associations with disease phenotype, treatment, and outcome.
        Clin Exp Gastroenterol. 2019; 12: 37-49
        • Papa E.
        • Docktor M.
        • Smillie C.
        • et al.
        Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease.
        PLoS ONE. 2012; 7: e39242
        • Kolho K.L.
        • Korpela K.
        • Jaakkola T.
        • et al.
        Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation.
        Am J Gastroenterol. 2015; 110: 921-930
        • Parfrey L.W.
        • Walters W.A.
        • Knight R
        Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions.
        Front Microbiol. 2011; 2: 153
        • Ward T.L.
        • Knights D.
        • Gale C.A
        Infant fungal communities: current knowledge and research opportunities.
        BMC Med. 2017; 15: 30
        • Strati F.
        • Di Paola M.
        • Stefanini I.
        • et al.
        Age and gender affect the composition of fungal population of the human gastrointestinal tract.
        Front Microbiol. 2016; 7: 1-16
        • Koenig J.E.
        • Spor A.
        • Scalfone N.
        • et al.
        Succession of microbial consortia in the developing infant gut microbiome.
        Proc Natl Acad Sci U S A. 2011; 108 (Suppl 1): 4578-4585
        • Hoffmann C.
        • Dollive S.
        • Grunberg S.
        • et al.
        Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.
        PLoS ONE. 2013; 8: e66019
        • David L.A.
        • Maurice C.F.
        • Carmody R.N.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • LaTuga M.S.
        • Ellis J.C.
        • Cotton C.M.
        • et al.
        Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants.
        PLoS ONE. 2011; 6: e27858
        • Heisel T.
        • Podgorski H.
        • Staley C.M.
        • et al.
        Complementary amplicon-based genomic approaches for the study of fungal communities in humans.
        PLoS ONE. 2015; 10e0116705
        • Schei K.
        • Avershina E.
        • Øien T.
        • et al.
        Early gut mycobiota and mother-offspring transfer.
        Microbiome. 2017; 5: 107
        • El Mouzan M.
        • Wang F.
        • Al Mofarreh M.
        • et al.
        Fungal microbiota profile in newly diagnosed treatment-naïve children with Crohn's disease.
        J Crohns Colitis. 2017; 11: 586-592
        • Mukhopadhya I.
        • Hansen R.
        • Meharg C.
        • et al.
        The fungal microbiota of de-novo paediatric inflammatory bowel disease.
        Microbes Infect. 2015; 17: 304-310
        • Chehoud C.
        • Albenberg L.G.
        • Judge C.
        • et al.
        Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease.
        Inflamm Bowel Dis. 2015; 21: 1948-1956
        • Sokol H.
        • Leducq V.
        • Aschard H.
        • et al.
        Fungal microbiota dysbiosis in IBD.
        Gut. 2017; 66: 1039-1048
        • El Mouzan M.I.
        • Korolev K.S.
        • Al Mofarreh M.A.
        • et al.
        Fungal dysbiosis predicts the diagnosis of pediatric Crohn's disease.
        World J Gastroenterol. 2018; 24: 4510-4516
        • Weinstock J V.
        • Elliott D.E.
        Helminths and the IBD hygiene hypothesis.
        Inflamm Bowel Dis. 2009; 15: 128-133
        • Reardon C.
        • Sanchez A.
        • Hogaboam C.M.
        • et al.
        Tapeworm infection reduces epithelial ion transport abnormalities in murine dextran sulfate sodium-induced colitis.
        Infect Immun. 2001; 69: 4417-4423
        • Summers R.W.
        • Elliott D.E.
        • Qadir K.
        • et al.
        Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease.
        Am J Gastroenterol. 2003; 98: 2034-2041
        • Lopes F.
        • Matisz C.
        • Reyes J.L.
        • et al.
        Helminth regulation of immunity: a three-pronged approach to treat colitis.
        Inflamm Bowel Dis. 2016; 22: 2499-2512
        • Ruemmele F.M.
        • Veres G.
        • Kolho K.L.
        • et al.
        Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease.
        J Crohn's Colitis. 2014; 8: 1179-1207
        • Miele E.
        • Shamir R.
        • Aloi M.
        • et al.
        Nutrition in pediatric inflammatory bowel disease: a position paper on behalf of the porto inflammatory bowel disease group of the European society of pediatric gastroenterology, hepatology and nutrition.
        J Pediatr Gastroenterol Nutr. 2018; 66: 687-708
        • Gatti S.
        • Galeazzi T.
        • Franceschini E.
        • et al.
        Effects of the exclusive enteral nutrition on the microbiota profile of patients with crohn's disease: a systematic review.
        Nutrients. 2017; 9: 832
        • Gerasimidis K.
        • Bertz M.
        • Hanske L.
        • et al.
        Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition.
        Inflamm Bowel Dis. 2014; 20: 861-871
        • Quince C.
        • Ijaz U.Z.
        • Loman N.
        • et al.
        Extensive modulation of the fecal metagenome in children with Crohn's disease during exclusive enteral nutrition.
        Am J Gastroenterol. 2015; 110: 1718-1730
        • Gerasimidis K.
        • Russell R.
        • Hansen R.
        • et al.
        Role of faecalibacterium prausnitzii in Crohn's disease: friend, foe, or does not really matter?.
        Inflamm Bowel Dis. 2014; 20: E18-E19
        • Guandalini S.
        • Sansotta N.
        Probiotics in the treatment of inflammatory bowel disease.
        Adv. Exp. Med. Biol. 2019; 1125: 101-107
        • Van Rheenen PF
        • M Aloi
        • Assa A.
        • Bronsky J.
        • et al.
        The medical management of paediatric Crohn's disease: an ECCO-ESPGHAN guideline update.
        J Crohn's Colitis. 2020; (jjaa161 Epub ahead of print)
        • Turner D.
        • Ruemmele F.M.
        • Orlanski-Meyer E.
        • et al.
        Management of paediatric ulcerative colitis, part 1: ambulatory care-an evidence-based guideline from European Crohn's and colitis organization and European society of paediatric gastroenterology, hepatology and nutrition.
        J Pediatr Gastroenterol Nutr. 2018; 67: 257-291
        • Ledder O.
        Antibiotics in inflammatory bowel diseases: do we know what we're doing?.
        Transl Pediatr. 2019; 8: 42-55
        • Lev-Tzion R.
        • Ledder O.
        • Shteyer E.
        • Tan M.L.N.
        • Uhlig H.H.
        • Turner D
        Oral vancomycin and gentamicin for treatment of very early onset inflammatory bowel disease.
        Digestion. 2017; 95: 310-313
        • Lewis J.D.
        • Chen E.Z.
        • Baldassano R.N.
        • et al.
        Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease.
        Cell Host Microbe. 2015; 18: 489-500
        • Quraishi M.N.
        • Shaheen W.
        • Oo Y.H.
        • et al.
        Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease.
        Clin Exp Immunol. 2020; 199: 24-38
        • Kalla R.
        • Borg-Bartolo S.P.
        • Boyapati R.K.
        • et al.
        Precision medicine in inflammatory bowel disease: concept, progress and challenges.
        F1000Res. 2020; 9 (Faculty Rev-54): F1000
        • Shaw K.A.
        • Bertha M.
        • Hofmekler T.
        • et al.
        Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease.
        Genome Med. 2016; 8: 75
        • Ryan F.J.
        • Ahern A.M.
        • Fitzgerald R.S.
        • et al.
        Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease.
        Nat Commun. 2020; 11: 1512
        • Ho S.M.
        • Lewis J.D.
        • Mayer E.A.
        • et al.
        Challenges in IBD research: environmental triggers.
        Inflamm Bowel Dis. 2019; 25: S13-S23
        • De Souza H.S.P.
        • Fiocchi C.
        • Iliopoulos D
        The IBD interactome: an integrated view of aetiology, pathogenesis and therapy.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 739-749
        • Fiocchi C.
        • Iliopoulos D.
        What's new in IBD therapy: an “omics network” approach.
        Pharmacol Res. 2020; 159104886
        • Caporaso J.G.
        • Lauber C.L.
        • Costello E.K.
        • et al.
        Moving pictures of the human microbiome.
        Genome Biol. 2011; 12: R50