Advertisement
Alimentary Tract| Volume 51, ISSUE 7, P944-951, July 2019

Potential biomarkers to predict outcome of faecal microbiota transfer for recurrent Clostridioides difficile infection

  • Author Footnotes
    1 These authors contributed equally to this work.
    Fedja Farowski
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department I of Internal Medicine, University Hospital of Cologne, Germany

    German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Philipp Solbach
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Hannover Medical School, Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Germany

    Hannover Medical School, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany

    German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
    Search for articles by this author
  • Anastasia Tsakmaklis
    Affiliations
    Department I of Internal Medicine, University Hospital of Cologne, Germany

    German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
    Search for articles by this author
  • Susanne Brodesser
    Affiliations
    Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
    Search for articles by this author
  • M. Rebeca Cruz Aguilar
    Affiliations
    Department I of Internal Medicine, University Hospital of Cologne, Germany
    Search for articles by this author
  • Oliver A. Cornely
    Affiliations
    Department I of Internal Medicine, University Hospital of Cologne, Germany

    German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany

    Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
    Search for articles by this author
  • Katja Dettmer
    Affiliations
    Institute of Functional Genomics, University of Regensburg, Germany
    Search for articles by this author
  • Paul G. Higgins
    Affiliations
    Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany

    German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
    Search for articles by this author
  • Sebastian Suerbaum
    Affiliations
    Hannover Medical School, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany

    German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany

    Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany

    German Center for Infection Research (DZIF), Partner Site Munich, Germany
    Search for articles by this author
  • Nathalie Jazmati
    Affiliations
    German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany

    Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany
    Search for articles by this author
  • Peter J. Oefner
    Affiliations
    Institute of Functional Genomics, University of Regensburg, Germany
    Search for articles by this author
  • Maria J.G.T. Vehreschild
    Correspondence
    Corresponding author at: University Hospital of Cologne, Department I of Internal Medicine, 50924 Cologne, Germany.
    Affiliations
    Department I of Internal Medicine, University Hospital of Cologne, Germany

    German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
    Search for articles by this author
  • for the German Clinical Microbiome Study Group (GCMSG)
  • Author Footnotes
    1 These authors contributed equally to this work.
Published:January 26, 2019DOI:https://doi.org/10.1016/j.dld.2019.01.012

      Abstract

      Background & Aims

      Faecal microbiota transplantation (FMT) has proven high clinical efficacy in the management of recurrent Clostridioides difficile infection (rCDI) with cure rates of over 80% after a single treatment. Nevertheless, the reasons for failure in the remaining 20% remain elusive. The aim of the present study was to investigate different potential predictors of response to FMT.

      Methods

      Faecal specimens of sixteen patients undergoing FMT for rCDI, as well as samples from the respective donors were collected and analyzed by 16S rRNA gene profiling, bile acid-inducible (baiCD) gene specific qPCR, and liquid chromatography tandem-mass spectrometry (LC–MS/MS) to quantify the concentrations of primary and secondary bile acids.

      Results

      Using the faecal concentration of the secondary bile acid lithocholic acid (LCA)within the patient specimens, we were able to predict response to FMT (accuracy 95.2%, sensitivity 100%, specificity 90.9%). By combining the faecal LCA concentration with the urinary pCS concentration, an accuracy of 100% was achieved.

      Conclusion

      LCA appears to be a promising marker candidate for prediction of clinical response to FMT. Other makers, such as urinary concentration of pCS, but not 3-IS, might be used to improve accuracy of prediction. Further studies are warranted to validate these candidate markers.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Magill S.S.
        • Edwards J.R.
        • Bamberg W.
        • Beldavs Z.G.
        • Dumyati G.
        • Kainer M.A.
        • et al.
        Multistate point-prevalence survey of health care-associated infections.
        N Engl J Med. 2014; 370: 1198-1208
        • Tabak Y.P.
        • Zilberberg M.D.
        • Johannes R.S.
        • Sun X.
        • McDonald L.C.
        Attributable burden of hospital-onset clostridium difficile infection: a propensity score matching study.
        Infect Control Hosp Epidemiol. 2013; 34: 588-596
        • Wiegand P.N.
        • Nathwani D.
        • Wilcox M.H.
        • Stephens J.
        • Shelbaya A.
        • Haider S.
        Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection.
        J Hosp Infect. 2012; 81: 1-14
        • Sheitoyan-Pesant C.
        • Abou Chakra C.N.
        • Pepin J.
        • Marcil-Heguy A.
        • Nault V.
        • Valiquette L.
        Clinical and healthcare burden of multiple recurrences of clostridium difficile infection.
        Clin Infect Dis. 2016; 62: 574-580
        • Cornely O.A.
        • Crook D.W.
        • Esposito R.
        • Poirier A.
        • Somero M.S.
        • Weiss K.
        • et al.
        Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial.
        Lancet Infect Dis. 2012; 12: 281-289
        • Guery B.
        • Menichetti F.
        • Anttila V.J.
        • Adomakoh N.
        • Aguado J.M.
        • Bisnauthsing K.
        • et al.
        Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection in patients 60 years and older (EXTEND): a randomised, controlled, open-label, phase 3b/4 trial.
        Lancet Infect Dis. 2018; 18: 296-307
        • Johnson S.
        • Gerding D.N.
        Fidaxomicin “chaser” regimen following vancomycin for patients with multiple Clostridium difficile recurrences.
        Clin Infect Dis. 2013; 56: 309-310
        • Louie T.J.
        • Miller M.A.
        • Mullane K.M.
        • Weiss K.
        • Lentnek A.
        • Golan Y.
        • et al.
        Fidaxomicin versus vancomycin for Clostridium difficile infection.
        N Engl J Med. 2011; 364: 422-431
        • Sorg J.A.
        • Sonenshein A.L.
        Bile salts and glycine as cogerminants for Clostridium difficile spores.
        J Bacteriol. 2008; 190: 2505-2512
        • Sorg J.A.
        • Sonenshein A.L.
        Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid.
        J Bacteriol. 2010; 192: 4983-4990
        • Thanissery R.
        • Winston J.A.
        • Theriot C.M.
        Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids.
        Anaerobe. 2017; 45: 86-100
        • Quraishi M.N.
        • Widlak M.
        • Bhala N.
        • Moore D.
        • Price M.
        • Sharma N.
        • et al.
        Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection.
        Aliment Pharmacol Ther. 2017; 46: 479-493
        • Weingarden A.R.
        • Chen C.
        • Bobr A.
        • Yao D.
        • Lu Y.
        • Nelson V.M.
        • et al.
        Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.
        Am J Physiol Gastrointest Liver physiol. 2014; 306: G310-G319
        • Kang D.J.
        • Ridlon J.M.
        • Moore 2nd, D.R.
        • Barnes S.
        • Hylemon P.B.
        Clostridium scindens baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases.
        Biochim Biophys Acta. 2008; 1781: 16-25
        • Wells J.E.
        • Hylemon P.B.
        Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces.
        Appl Environ Microbiol. 2000; 66: 1107-1113
        • Berr F.
        • Kullak-Ublick G.A.
        • Paumgartner G.
        • Munzing W.
        • Hylemon P.B.
        7 alpha-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones.
        Gastroenterology. 1996; 111: 1611-1620
        • Carman R.J.
        • Simon M.A.
        • Petzold H.E.
        • Wimmer R.F.
        • Batra M.R.
        • Fernandez A.H.
        • et al.
        Antibiotics in the human food chain: establishing no effect levels of tetracycline, neomycin, and erythromycin using a chemostat model of the human colonic microflora.
        Regul Toxicol Pharmacol. 2005; 43: 168-180
        • Giel J.L.
        • Sorg J.A.
        • Sonenshein A.L.
        • Zhu J.
        Metabolism of bile salts in mice influences spore germination in Clostridium difficile.
        PloS One. 2010; 5e8740
        • Hashimoto S.
        • Igimi H.
        • Uchida K.
        • Satoh T.
        • Benno Y.
        • Takeuchi N.
        Effects of beta-lactam antibiotics on intestinal microflora and bile acid metabolism in rats.
        Lipids. 1996; 31: 601-609
        • Toda T.
        • Ohi K.
        • Kudo T.
        • Yoshida T.
        • Ikarashi N.
        • Ito K.
        • et al.
        Antibiotics suppress Cyp3a in the mouse liver by reducing lithocholic acid-producing intestinal flora.
        Yakugaku zasshi. 2009; 129: 601-608
        • Weber D.
        • Oefner P.J.
        • Hiergeist A.
        • Koestler J.
        • Gessner A.
        • Weber M.
        • et al.
        Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome.
        Blood. 2015; 126: 1723-1728
        • Tacke D.
        • Wisplinghoff H.
        • Kretzschmar A.
        • Farowski F.
        • Koehler P.
        • Herweg J.
        • et al.
        First implementation of frozen, capsulized faecal microbiota transplantation for recurrent Clostridium difficile infection into clinical practice in Europe.
        Clin Microbiol Infect. 2015; 21: e82-e84
        • Klindworth A.
        • Pruesse E.
        • Schweer T.
        • Peplies J.
        • Quast C.
        • Horn M.
        • et al.
        Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.
        Nucleic Acids Res. 2013; 41 (e1)
        • Illumina
        16S sample preparation guide.
        Illumina, 2016
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • Bittinger K.
        • Bushman F.D.
        • Costello E.K.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Callahan B.J.
        • McMurdie P.J.
        • Rosen M.J.
        • Han A.W.
        • Johnson A.J.A.
        • Holmes S.P.
        DADA2: High-resolution sample inference from Illumina amplicon data.
        Nat Methods. 2016; 13: 581
        • Pedregosa F.
        • Varoquaux G.
        • Gramfort A.
        • Michel V.
        • Thirion B.
        • Grisel O.
        • et al.
        Scikit-learn: machine learning in python.
        J Mach Learn Res. 2011; 12: 2825-2830
        • Quast C.
        • Pruesse E.
        • Yilmaz P.
        • Gerken J.
        • Schweer T.
        • Yarza P.
        • et al.
        The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
        Nucleic Acids Res. 2013; 41: D590-D596
        • Solbach P.
        • Chhatwal P.
        • Woltemate S.
        • Tacconelli E.
        • Buhl M.
        • Gerhard M.
        • et al.
        BaiCD gene cluster abundance is negatively correlated with Clostridium difficile infection.
        PloS One. 2018; 13e0196977
        • Pham H.T.
        • Arnhard K.
        • Asad Y.J.
        • Deng L.
        • Felder T.K.
        • St. John-Williams L.
        • et al.
        Inter-laboratory robustness of next-generation bile acid study in mice and humans: international ring trial involving 12 laboratories.
        J Appl Lab Med. 2016; : 2016
        • R Core Team
        R: A language and environment for statistical computing.
        3.2.5 ed. R Foundation for Statistical Computing, Vienna, Austria2016
        • McMurdie P.J.
        • Holmes S.
        phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.
        PLoS One. 2013; 8e61217
        • Sing T.
        • Sander O.
        • Beerenwinkel N.
        • Lengauer T.
        • et al.
        ROCR: visualizing classifier performance in R.
        Bioinformatics. 2005; 21: 3940-3941
        • van Nood E.
        • Vrieze A.
        • Nieuwdorp M.
        • Fuentes S.
        • Zoetendal E.G.
        • de Vos W.M.
        • et al.
        Duodenal infusion of donor feces for recurrent clostridium difficile.
        N Engl J Med. 2013; 368: 407-415
        • Fischer M.
        • Kao D.
        • Mehta S.R.
        • Martin T.
        • Dimitry J.
        • Keshteli A.H.
        • et al.
        Predictors of early failure after fecal microbiota transplantation for the therapy of clostridium difficile infection: a multicenter study.
        Am J Gastroenterol. 2016; 111: 1024-1031
        • Pringle P.L.
        • Soto M.T.
        • Chung R.T.
        • Hohmann E.
        Patients with cirrhosis require more fecal microbiota capsules to cure refractory and recurrent Clostridium difficile infections.
        Clin Gastroenterol Hepatol. 2018; https://doi.org/10.1016/j.cgh.2018.05.038
        • Fuentes S.
        • van Nood E.
        • Tims S.
        • Heikamp-de Jong I.
        • ter Braak C.J.
        • Keller J.J.
        • et al.
        Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent Clostridium difficile infection.
        ISME J. 2014; 8: 1621-1633
        • Khanna S.
        • Jones C.
        • Jones L.
        • Bushman F.
        • Bailey A.
        Increased microbial diversity found in successful versus unsuccessful recipients of a next-generation fmt for recurrent Clostridium difficile infection.
        Open Forum Infect Dis. 2015; 2
        • Seekatz A.M.
        • Aas J.
        • Gessert C.E.
        • Rubin T.A.
        • Saman D.M.
        • Bakken J.S.
        • et al.
        Recovery of the gut microbiome following fecal microbiota transplantation.
        mBio. 2014; 5 (e00893-14)
        • van Nood E.
        • Vrieze A.
        • Nieuwdorp M.
        • Fuentes S.
        • Zoetendal E.G.
        • de Vos W.M.
        • et al.
        Duodenal infusion of donor feces for recurrent Clostridium difficile.
        N Engl J Med. 2013; 368: 407-415
        • Buffie C.G.
        • Bucci V.
        • Stein R.R.
        • McKenney P.T.
        • Ling L.
        • Gobourne A.
        • et al.
        Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile.
        Nature. 2015; 517: 205-208
        • Allegretti J.R.
        • Kearney S.
        • Li N.
        • Bogart E.
        • Bullock K.
        • Gerber G.K.
        • et al.
        Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles.
        Aliment Pharmacol Ther. 2016; 43: 1142-1153