Advertisement
Alimentary Tract| Volume 51, ISSUE 1, P47-54, January 2019

Download started.

Ok

Gliadin effect on the oxidative balance and DNA damage: An in-vitro, ex-vivo study

  • Erika Monguzzi
    Affiliations
    Gastroenterology and Endoscopy Unit – Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy

    Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author
  • Laura Marabini
    Affiliations
    Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
    Search for articles by this author
  • Luca Elli
    Correspondence
    Corresponding author at: Center for the Prevention and Diagnosis of Celiac Disease, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via F. Sforza, 35 Milano, Italy.
    Affiliations
    Gastroenterology and Endoscopy Unit – Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy
    Search for articles by this author
  • Valentina Vaira
    Affiliations
    Division of Pathology, IRCCS Ca’ Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy

    Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author
  • Stefano Ferrero
    Affiliations
    Division of Pathology, IRCCS Ca’ Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy

    Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author
  • Francesca Ferretti
    Affiliations
    Gastroenterology and Endoscopy Unit – Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy

    Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author
  • Federica Branchi
    Affiliations
    Gastroenterology and Endoscopy Unit – Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy

    Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author
  • Gabriella Gaudioso
    Affiliations
    Division of Pathology, IRCCS Ca’ Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy
    Search for articles by this author
  • Alice Scricciolo
    Affiliations
    Gastroenterology and Endoscopy Unit – Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy
    Search for articles by this author
  • Vincenza Lombardo
    Affiliations
    Gastroenterology and Endoscopy Unit – Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy
    Search for articles by this author
  • Luisa Doneda
    Affiliations
    Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author
  • Leda Roncoroni
    Affiliations
    Gastroenterology and Endoscopy Unit – Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation “Ospedale Maggiore Policlinico”, Milan, Italy

    Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy

    Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author

      Abstract

      Background

      Gliadins are involved in gluten-related disorders and are responsible for the alteration of the cellular redox balance. It is not clear if the gliadin-related oxidative stress can induce DNA damage in enterocytes.

      Aim

      To investigate any possible genotoxicity caused by gliadin and to assess its relationship with oxidative stress in vitro and ex vivo.

      Methods

      Caco-2 cells were exposed for 6–12–24 h to increasing concentrations (250 μg/mL–1000 μg/mL) of digested gliadin. We investigated: cytotoxicity, oxidative balance (reactive oxygen species, ROS), DNA damage (comet assay and γ-H2AX detection), transglutaminase type 2 (TG2) activity and annexin V expression. H2AX and 8-OHG immunohistochemistry has been evaluated on duodenal biopsies of celiac subjects and controls.

      Results

      Gliadin induced a significant increase (+50%) of ROS after 12 h of exposition starting with a 500 μg/mL dose of gliadin. Comet assay and γ-H2AX demonstrated DNA damage, evident at the gliadin concentration of 500 μg/mL after 24 h. TG2 activity increased in chromatin and cytoskeleton cellular compartments at different gliadin doses (250/500/1000 μg/mL). The γ-H2AX and 8-OHG immunohistochemistry was altered in the duodenal biopsies of celiac patients.

      Conclusions

      Gliadin induces cellular oxidative stress, DNA damage and pro-apoptotic stimulation in Caco-2 cells and in the duodenal mucosa of celiac patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Catassi C.
        • Alaedini A.
        • Bojarski C.
        • Bonaz B.
        • Bouma G.
        • Carroccio A.
        • et al.
        The overlapping area of Non-Celiac Gluten Sensitivity (NCGS) and wheat-sensitive Irritable Bowel Syndrome (IBS): an update.
        Nutrients. 2017; : 9
        • Sapone A.
        • Bai J.C.
        • Ciacci C.
        • Dolinsek J.
        • Green P.H.
        • Hadjivassiliou M.
        • et al.
        Spectrum of gluten-related disorders: consensus on new nomenclature and classification.
        BMC Med. 2012; 10: 13
        • Elli L.
        • Branchi F.
        • Tomba C.
        • Villalta D.
        • Norsa L.
        • Ferretti F.
        • et al.
        Diagnosis of gluten related disorders: Celiac disease, wheat allergy and non-celiac gluten sensitivity.
        World J Gastroenterol. 2015; 21: 7110-7119
        • Sollid L.M.
        Molecular basis of celiac disease.
        Annu Rev Immunol. 2000; 18: 53-81
        • Luciani A.
        • Villella V.R.
        • Vasaturo A.
        • Giardino I.
        • Pettoello-Mantovani M.
        • Guido S.
        • et al.
        Lysosomal accumulation of gliadin p31-43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARgamma downregulation in intestinal epithelial cells and coeliac mucosa.
        Gut. 2010; 59: 311-319
        • Dolfini E.
        • Elli L.
        • Dasdia T.
        • Bufardeci B.
        • Colleoni M.P.
        • Costa B.
        • et al.
        In vitro cytotoxic effect of bread wheat gliadin on the LoVo human adenocarcinoma cell line.
        Toxicol In Vitro. 2002; 16: 331-337
        • Dolfini E.
        • Elli L.
        • Roncoroni L.
        • Costa B.
        • Colleoni M.P.
        • Lorusso V.
        • et al.
        Damaging effects of gliadin on three-dimensional cell culture model.
        World J Gastroenterol. 2005; 11: 5973-5977
        • Halliwell B.
        Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life.
        Plant Physiol. 2006; 141: 312-322
        • Verbeek W.H.
        • Goerres M.S.
        • von Blomberg B.M.
        • Oudejans J.J.
        • Scholten P.E.
        • Hadithi M.
        • et al.
        Flow cytometric determinutesation of aberrant intra-epithelial lymphocytes predicts T-cell lymphoma development more accurately than T-cell clonality analysis in Refractory Celiac Disease.
        Clin Immunol. 2008; 126: 48-56
        • Keshavarzian A.
        • Banan A.
        • Farhadi A.
        • Komanduri S.
        • Mutlu E.
        • Zhang Y.
        • et al.
        Increases in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease.
        Gut. 2003; 52: 720-728
        • Dugas B.
        • Dugas N.
        • Conti M.
        • Calenda A.
        • Pino P.
        • Thomas Y.
        • et al.
        Wheat gliadin promotes the interleukin-4-induced IgE production by normal human peripheral mononuclear cells through a redox-dependent mechanism.
        Cytokine. 2003; 21: 270-280
        • Maiuri M.C.
        • De Stefano D.
        • Mele G.
        • Iovine B.
        • Bevilacqua M.A.
        • Greco L.
        • et al.
        Gliadin increases iNOS gene expression in interferon-gamma-stimulated RAW 264.7 cells through a mechanism involving NF-kappa B.
        Naunyn Schmiedebergs Arch Pharmacol. 2003; 368: 63-71
        • Ientile R.
        • Caccamo D.
        • Griffin M.
        Tissue transglutaminase and the stress response.
        Amino Acids. 2007; 33: 385-394
        • Klöck C.
        • Diraimondo T.R.
        • Khosla C.
        Role of transglutaminase 2 in celiac disease pathogenesis.
        Semin Immunopathol. 2012; 34: 513-522
        • Rauhavirta T.
        • Hietikko M.
        • Salmi T.
        • Lindfors k.
        Transglutaminase 2 and Transglutaminase 2 autoantibodies in celiac disease: a review.
        Clin Rev Allergy Immunol. 2016; ([Epub ahead of print] http://doi.org/10.1007/s12016-016-8557-4)
        • Stojiljković V.
        • Pejić S.
        • Kasapović J.
        • Gavrilović L.
        • Stojiljković S.
        • Nikolić D.
        • et al.
        Glutathione redox cycle in small intestinal mucosa and peripheral blood of pediatric celiac disease patients.
        An Acad Bras Cienc. 2012; 84: 175-184
        • Katar M.
        • Ozugurlu A.F.
        • Ozyurt H.
        • Benli I.
        Evaluation of glutathione peroxidase and superoxide dismutase enzyme polymorphisms in celiac disease patients.
        Genet Mol Res. 2014; 13: 1030-1037
        • Marnett L.J.
        Oxyradicals and DNA damage.
        Carcinogenesis. 2000; 21: 361-370
        • Guyton K.Z.
        • Kensler T.W.
        Oxidative mechanisms in carcinogenesis.
        Br Med Bull. 1993; 49: 523-544
        • Halliwell B.
        Can oxidative DNA damage be used as a biomarker of cancer risk in humans? Problems, resolutions and preliminutesary results from nutritional supplementation studies.
        Free Radic Res. 1998; 29: 469-486
        • Kawanishi S.
        • Hiraku Y.
        • Oikawa S.
        Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging.
        Mutat Res. 2001; 488: 65-76
        • Friis S.
        • Dabelsteen E.
        • Sjöström H.
        • Norén O.
        • Jarnum S.
        Gliadin uptake in human enterocytes. Differences between coeliac patients in remission and control individuals.
        Gut. 1992; 33: 1487-1492
        • Prosperini A.
        • Juan-García A.
        • Font G.
        • Ruiz M.J.
        Reactive oxygen species involvement in apoptosis and mitochondrial damage in Caco-2 cells induced by enniatins A, A1, B and B1.
        Toxicol Lett. 2013; 222: 36-44
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J Biol Chem. 1951; 193: 265-275
        • Collins A.R.
        • Oscoz A.A.
        • Brunborg G.
        • Gaivão I.
        • Giovannelli L.
        • Kruszewski M.
        • et al.
        The comet assay: topical issues.
        Mutagenesis. 2008; 23: 143-151
        • Biancini G.B.
        • Moura D.J.
        • Manini P.R.
        • Faverzani J.L.
        • Netto C.B.
        • Deon M.
        • et al.
        DNA damage in Fabry patients: an investigation of oxidative damage and repair.
        Mutat Res Genet Toxicol Environ Mutagen. 2015; 784–785: 31-36
        • Valko M.
        • Leibfritz D.
        • Moncol J.
        • Cronin M.T.
        • Mazur M.
        • Telser J.
        Free radicals and antioxidants in normal physiological functions and human disease.
        Int J Biochem Cell Biol. 2007; 39: 44-84
        • Diosdado B.
        • van Oort E.
        • Wijmenga C.
        “Coelionomics”: towards understanding the molecular pathology of coeliac disease.
        Clin Chem Lab Med. 2005; 43: 685-695
        • Olinski R.
        • Gackowski D.
        • Rozalski R.
        • Foksinski M.
        • Bialkowski K.
        Oxidative DNA damage in cancer patients: a cause or a consequence of the disease development?.
        Mutat Res. 2003; 531: 177-190
        • Collins A.R.
        The comet assay for DNA damage and repair: principles, applications, and limitations.
        Mol Biotechnol. 2004; 26: 249-261
        • Gielazyn M.L.
        • Ringwood A.H.
        • Piegorsch W.W.
        • Stancyk S.E.
        Detection of oxidative DNA damage in isolated marine bivalve hemocytes using the comet assay and formamidopyrimidine glycosylase (Fpg).
        Mutat Res. 2003; 542: 15-22
        • Elli L.
        • Bergaminutesi C.M.
        • Bardella M.T.
        • Schuppan D.
        Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver.
        Dig Liver Dis. 2009; 41: 541-550
        • Nurminutesskaya M.V.
        • Belkin A.M.
        Cellular functions of tissue transglutaminase.
        Int Rev Cell Mol Biol. 2012; 294: 1-97
        • Caccamo D.
        • Currò M.
        • Ferlazzo N.
        • Condello S.
        • Ientile R.
        Monitoring of transglutaminase 2 under different oxidative stress conditions.
        Amino Acids. 2012; 42: 1037-1043