Advertisement

Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases

  • Roberto Codella
    Correspondence
    Corresponding author at: Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, 20090 Segrate, Milano, Italy.
    Affiliations
    Department of Biomedical Sciences for Health, University of Milan, Milan, Italy

    Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
    Search for articles by this author
  • Livio Luzi
    Affiliations
    Department of Biomedical Sciences for Health, University of Milan, Milan, Italy

    Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
    Search for articles by this author
  • Ileana Terruzzi
    Affiliations
    Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
    Search for articles by this author
Published:November 28, 2017DOI:https://doi.org/10.1016/j.dld.2017.11.016

      Abstract

      Limited animal and human research findings suggests that exercise might have a beneficial role for health gut. Cardiorespiratory fitness correlates with health-associated gut parameters such as taxonomic diversity and richness. Physical exercise may augment intestinal microbial diversity through several mechanisms including promotion of an anti-inflammatory state. Disease-associated microbial functions were linked to distinct taxa in previous studies of familial type 1 diabetes mellitus (T1D). An integrated multi-approach in the study of T1D, including physical exercise, is advocated. The present review explores how exercise might modulate gut microbiota and microbiome characteristics in chronic and immune-based diseases, given the demonstrated relationship between gut function and human health.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Digestive and Liver Disease
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Colberg S.R.
        • Sigal R.J.
        • Yardley J.E.
        • Riddell M.C.
        • Dunstan D.W.
        • Dempsey P.C.
        • et al.
        Physical activity/exercise and diabetes: a position statement of the American Diabetes Association.
        Diabetes Care. 2016; 39: 2065-2079https://doi.org/10.2337/dc16-1728
      1. WHO | Information sheet: global recommendations on physical activity for health 5–17 years old.
        WHO, 2015
        • Codella R.
        • Terruzzi I.
        • Luzi L.
        Sugars, exercise and health.
        J. Affective Disord. 2017; 224: 76-86
        • Colberg S.R.
        • Sigal R.J.
        • Fernhall B.
        • Regensteiner J.G.
        • Blissmer B.J.
        • Rubin R.R.
        • et al.
        Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement.
        Diabetes Care. 2010; 33: e147-e167https://doi.org/10.2337/dc10-9990
        • Handelsman Y.
        • Bloomgarden Z.T.
        • Grunberger G.
        • Umpierrez G.
        • Zimmerman R.S.
        • Bailey T.S.
        • et al.
        American Association of Clinical Endocrinologists and American College of Endocrinology – clinical practice guidelines for developing a diabetes mellitus comprehensive care plan – 2015 — executive summary.
        Endocr Pract. 2015; 21: 413-437https://doi.org/10.4158/EP15672.GL
        • Weiss E.P.
        • Jordan R.C.
        • Frese E.M.
        • Albert S.G.
        • Villareal D.T.
        Effects of weight loss on lean mass, strength, bone, and aerobic capacity.
        Med Sci Sports Exerc. 2017; 49: 206-217https://doi.org/10.1249/MSS.0000000000001074
        • Pedersen B.K.
        • Saltin B.
        Exercise as medicine — evidence for prescribing exercise as therapy in 26 different chronic diseases.
        Scand J Med Sci Sports. 2015; 25: 1-72https://doi.org/10.1111/sms.12581
        • Codella R.
        • Luzi L.
        • Inverardi L.
        • Ricordi C.
        The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity.
        Eur Rev Med Pharmacol Sci. 2015; 19: 3709-3722
        • Starkie R.
        • Ostrowski S.R.
        • Jauffred S.
        • Febbraio M.
        • Pedersen B.K.
        Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans.
        FASEB J. 2003; 17: 884-886https://doi.org/10.1096/fj.02-0670fje
        • Muñoz-Cánoves P.
        • Scheele C.
        • Pedersen B.K.
        • Serrano A.L.
        Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword?.
        FEBS J. 2013; 280: 4131-4148https://doi.org/10.1111/febs.12338
        • Pedersen B.K.
        Muscular interleukin-6 and its role as an energy sensor.
        Med Sci Sports Exerc. 2012; 44: 392-396https://doi.org/10.1249/MSS.0b013e31822f94ac
        • Steensberg A.
        • Fischer C.P.
        • Keller C.
        • Møller K.
        • Pedersen B.K.
        IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans.
        Am J Physiol Endocrinol Metab. 2003; 285: E433-E437https://doi.org/10.1152/ajpendo.00074.2003
        • Ellingsgaard H.
        • Hauselmann I.
        • Schuler B.
        • Habib A.M.
        • Baggio L.L.
        • Meier D.T.
        • et al.
        Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells.
        Nat Med. 2011; 17: 1481-1489https://doi.org/10.1038/nm.2513
        • Kelly M.
        • Keller C.
        • Avilucea P.R.
        • Keller P.
        • Luo Z.
        • Xiang X.
        • et al.
        AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise.
        Biochem Biophys Res Commun. 2004; 320: 449-454https://doi.org/10.1016/j.bbrc.2004.05.188
        • Carey A.L.
        • Steinberg G.R.
        • Macaulay S.L.
        • Thomas W.G.
        • Holmes A.G.
        • Ramm G.
        • et al.
        Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation In vitro via AMP-activated protein kinase.
        Diabetes. 2006; 55: 2688-2697https://doi.org/10.2337/db05-1404
      2. WHO | Global recommendations on physical activity for health.
        WHO, 2015
        • Booth F.W.
        • Roberts C.K.
        • Laye M.J.
        Lack of exercise is a major cause of chronic diseases.
        Compr Physiol. 2012; 2: 1143-1211https://doi.org/10.1002/cphy.c110025
        • Blair S.N.
        • Cheng Y.
        • Holder J.S.
        Is physical activity or physical fitness more important in defining health benefits?.
        Med Sci Sports Exerc. 2001; 33 (discussion S419–20): S379-S399
        • Flint H.J.
        • Scott K.P.
        • Louis P.
        • Duncan S.H.
        • Flint H.J.
        • Scott K.P.
        • et al.
        The role of the gut microbiota in nutrition and health.
        Nat Rev Gastroenterol Hepatol. 2012; 9https://doi.org/10.1038/nrgastro.2012.156
        • Rook G.
        • Bäckhed F.
        • Levin B.R.
        • McFall-Ngai M.J.
        • McLean A.R.
        Evolution, human-microbe interactions, and life history plasticity.
        Lancet (London, England). 2017; 390: 521-530https://doi.org/10.1016/S0140-6736(17)30566-4
        • Li J.
        • Jia H.
        • Cai X.
        • Zhong H.
        • Feng Q.
        • Sunagawa S.
        • et al.
        An integrated catalog of reference genes in the human gut microbiome.
        Nat Biotechnol. 2014; 32: 834-841https://doi.org/10.1038/nbt.2942
        • Qin J.
        • Li R.
        • Raes J.
        • Arumugam M.
        • Burgdorf K.S.
        • Manichanh C.
        • et al.
        A human gut microbial gene catalogue established by metagenomic sequencing.
        Nature. 2010; 464: 59-65https://doi.org/10.1038/nature08821
        • Gill S.R.
        • Pop M.
        • DeBoy R.T.
        • Eckburg P.B.
        • Turnbaugh P.J.
        • Samuel B.S.
        • et al.
        Metagenomic analysis of the human distal gut microbiome.
        Science (80-). 2006; 312: 1355-1359https://doi.org/10.1126/science.1124234
        • Rajilić-Stojanović M.
        • de Vos W.M.
        Thefirst 1000 cultured species of the human gastrointestinal microbiota.
        FEMS Microbiol Rev. 2014; 38: 996-1047https://doi.org/10.1111/1574-6976.12075
        • Bermon S.
        • Petriz B.
        • Kajėnienė A.
        • Prestes J.
        • Castell L.
        • Franco O.L.
        The microbiota: an exercise immunology perspective.
        Exerc Immunol Rev. 2015; 21: 70-79
        • Huttenhower C.
        • Gevers D.
        • Knight R.
        • Abubucker S.
        • Badger J.H.
        • Chinwalla A.T.
        • et al.
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214https://doi.org/10.1038/nature11234
        • Holzer P.
        • Reichmann F.
        • Farzi A.
        Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis.
        Neuropeptides. 2012; 46: 261-274https://doi.org/10.1016/j.npep.2012.08.005
        • Kimura I.
        • Ozawa K.
        • Inoue D.
        • Imamura T.
        • Kimura K.
        • Maeda T.
        • et al.
        The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43.
        Nat Commun. 2013; 4: 1829https://doi.org/10.1038/ncomms2852
        • Evans J.M.
        • Morris L.S.
        • Marchesi J.R.
        The gut microbiome: the role of a virtual organ in the endocrinology of the host.
        J Endocrinol. 2013; 218: R37-R47https://doi.org/10.1530/JOE-13-0131
        • Koh A.
        • De Vadder F.
        • Kovatcheva-Datchary P.
        • Bäckhed F.
        From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites.
        Cell. 2016; 165: 1332-1345https://doi.org/10.1016/j.cell.2016.05.041
        • Hunt R.H.
        • Camilleri M.
        • Crowe S.E.
        • El-Omar E.M.
        • Fox J.G.
        • Kuipers E.J.
        • et al.
        The stomach in health and disease.
        Gut. 2015; 64: 1650-1668https://doi.org/10.1136/gutjnl-2014-307595
        • Janeway C.A.
        • Medzhitov R.
        Innate immune recognition.
        Annu Rev Immunol. 2002; 20: 197-216https://doi.org/10.1146/annurev.immunol.20.083001.084359
        • Shanahan F.
        Probiotics in inflammatory bowel disease—therapeutic rationale and role.
        Adv Drug Deliv Rev. 2004; 56: 809-818https://doi.org/10.1016/j.addr.2003.11.003
        • Lichtenstein G.R.
        Chemokines and cytokines in inflammatory bowel disease and their application to disease treatment.
        Curr Opin Gastroenterol. 2000; 16: 83-88
        • Strober W.
        Impact of the gut microbiome on mucosal inflammation.
        Trends Immunol. 2013; 34: 423-430https://doi.org/10.1016/j.it.2013.07.001
        • Remely M.
        • Aumueller E.
        • Jahn D.
        • Hippe B.
        • Brath H.
        • Haslberger A.G.
        Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity.
        Benef Microbes. 2014; 5: 33-43https://doi.org/10.3920/BM2013.006
        • Nicholson J.K.
        • Holmes E.
        • Kinross J.
        • Burcelin R.
        • Gibson G.
        • Jia W.
        • et al.
        Host-gut microbiota metabolic interactions.
        Science (80-). 2012; 336: 1262-1267https://doi.org/10.1126/science.1223813
        • Claesson M.J.
        • Jeffery I.B.
        • Conde S.
        • Power S.E.
        • O’Connor E.M.
        • Cusack S.
        • et al.
        Gut microbiota composition correlates with diet and health in the elderly.
        Nature. 2012; 488: 178-184https://doi.org/10.1038/nature11319
        • Knip M.
        • Siljander H.
        The role of the intestinal microbiota in type 1 diabetes mellitus.
        Nat Rev Endocrinol. 2016; 12: 154-167https://doi.org/10.1038/nrendo.2015.218
        • Wen L.
        • Ley R.E.
        • Volchkov P.Y.
        • Stranges P.B.
        • Avanesyan L.
        • Stonebraker A.C.
        • et al.
        Innate immunity and intestinal microbiota in the development of Type 1 diabetes.
        Nature. 2008; 455: 1109-1113https://doi.org/10.1038/nature07336
        • Ghanizadeh A.
        Physical exercise and intermittent administration of lactulose may improve autism symptoms through hydrogen production.
        Med Gas Res. 2012; 2: 19https://doi.org/10.1186/2045-9912-2-19
        • Bravo J.A.
        • Forsythe P.
        • Chew M.V.
        • Escaravage E.
        • Savignac H.M.
        • Dinan T.G.
        • et al.
        Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.
        Proc Natl Acad Sci. 2011; 108: 16050-16055https://doi.org/10.1073/pnas.1102999108
        • Perrin P.
        • Pierre F.
        • Patry Y.
        • Champ M.
        • Berreur M.
        • Pradal G.
        • et al.
        Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats.
        Gut. 2001; 48: 53-61
        • Samuel B.S.
        • Shaito A.
        • Motoike T.
        • Rey F.E.
        • Backhed F.
        • Manchester J.K.
        • et al.
        Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.
        Proc Natl Acad Sci USA. 2008; 105: 16767-16772https://doi.org/10.1073/pnas.0808567105
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • Kranich J.
        • Sierro F.
        • Di Yu D.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-6128https://doi.org/10.1038/nature08530
        • Mika A.
        • Van Treuren W.
        • González A.
        • Herrera J.J.
        • Knight R.
        • Fleshner M.
        Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats.
        PLoS One. 2015; 10e0125889https://doi.org/10.1371/journal.pone.0125889
        • Bäckhed F.
        • Manchester J.K.
        • Semenkovich C.F.
        • Gordon J.I.
        Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.
        Proc Natl Acad Sci. 2007; 104: 979-984https://doi.org/10.1073/pnas.0605374104
        • Hsu Y.J.
        • Chiu C.C.
        • Li Y.P.
        • Huang W.C.
        • Huang Y. Te
        • Huang C.C.
        • et al.
        Effect of intestinal microbiota on exercise performance in mice.
        J Strength Cond Res. 2015; 29: 552-558https://doi.org/10.1519/JSC.0000000000000644
        • Campbell S.C.
        • Wisniewski P.J.
        • Noji M.
        • McGuinness L.R.
        • Häggblom M.M.
        • Lightfoot S.A.
        • et al.
        The effect of diet and exercise on intestinal integrity and microbial diversity in mice.
        PLoS One. 2016; 11e0150502https://doi.org/10.1371/journal.pone.0150502
        • Hagio M.
        • Matsumoto M.
        • Yajima T.
        • Hara H.
        • Ishizuka S.
        Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces.
        J Appl Physiol. 2010; 109: 663-668https://doi.org/10.1152/japplphysiol.00777.2009
        • Doyle A.
        • Zhang G.
        • Abdel Fattah E.A.
        • Eissa N.T.
        • Li Y.-P.
        Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways.
        FASEB J. 2011; 25: 99-110https://doi.org/10.1096/fj.10-164152
        • Viloria M.
        • Lara-Padilla E.
        • Campos-Rodríguez R.
        • Jarillo-Luna A.
        • Reyna-Garfias H.
        • López-Sánchez P.
        • et al.
        Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine.
        Immunol Invest. 2011; 40: 640-656https://doi.org/10.3109/08820139.2011.575425
        • Turnbaugh P.J.
        • Bäckhed F.
        • Fulton L.
        • Gordon J.I.
        Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome.
        Cell Host Microbe. 2008; 3: 213-223https://doi.org/10.1016/j.chom.2008.02.015
        • Fischer C.P.
        Interleukin-6 in acute exercise and training: what is the biological relevance?.
        Exerc Immunol Rev. 2006; 12: 6-33
        • Oettlé G.J.
        Effect of moderate exercise on bowel habit.
        Gut. 1991; 32: 941-944
        • Hoffman-Goetz L.
        • Spagnuolo P.A.
        • Guan J.
        Repeated exercise in mice alters expression of IL-10 and TNF-α in intestinal lymphocytes.
        Brain Behav Immun. 2008; 22: 195-199https://doi.org/10.1016/j.bbi.2007.07.002
        • Luo B.
        • Xiang D.
        • Nieman D.C.
        • Chen P.
        The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense.
        Brain Behav Immun. 2014; 39: 99-106https://doi.org/10.1016/j.bbi.2013.11.013
        • Mach N.
        • Fuster-Botella D.
        Endurance exercise and gut microbiota: a review.
        J Sport Health Sci. 2017; 6: 179-197https://doi.org/10.1016/j.jshs.2016.05.001
        • Fernandez-Gonzalo R.
        • De Paz J.A.
        • Rodriguez-Miguelez P.
        • Cuevas M.J.
        • González-Gallego J.
        TLR4-mediated blunting of inflammatory responses to eccentric exercise in young women.
        Mediators Inflamm. 2014; 2014: 1-11https://doi.org/10.1155/2014/479395
        • Rodriguez-Miguelez P.
        • Fernandez-Gonzalo R.
        • Almar M.
        • Mejías Y.
        • Rivas A.
        • de Paz J.A.
        • et al.
        Role of Toll-like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects.
        Age (Omaha). 2014; 36: 9734https://doi.org/10.1007/s11357-014-9734-0
        • Rehrer N.J.
        • Smets A.
        • Reynaert H.
        • Goes E.
        • De Meirleir K.
        Effect of exercise on portal vein blood flow in man.
        Med Sci Sports Exerc. 2001; 33: 1533-1537
        • van Wijck K.
        • Lenaerts K.
        • van Loon L.J.C.
        • Peters W.H.M.
        • Buurman W.A.
        • Dejong C.H.C.
        Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men.
        PLoS One. 2011; 6https://doi.org/10.1371/journal.pone.0022366
        • Oktedalen O.
        • Lunde O.C.
        • Opstad P.K.
        • Aabakken L.
        • Kvernebo K.
        Changes in the gastrointestinal mucosa after long-distance running.
        Scand J Gastroenterol. 1992; 27: 270-274https://doi.org/10.3109/00365529209000073
        • Lamprecht M.
        • Frauwallner A.
        Exercise, intestinal barrier dysfunction and probiotic supplementation.
        Med Sport Sci. 2012; 59: 47-56https://doi.org/10.1159/000342169
        • Pedersen B.K.
        • Toft A.D.
        Effects of exercise on lymphocytes and cytokines.
        Br J Sports Med. 2000; 34: 246-251
        • Pervaiz N.
        • Hoffman-Goetz L.
        Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice.
        Exerc Immunol Rev. 2012; 18: 142-157
        • O’Sullivan O.
        • Cronin O.
        • Clarke S.F.
        • Murphy E.F.
        • Molloy M.G.
        • Shanahan F.
        • et al.
        Exercise and the microbiota.
        Gut Microbes. 2015; 6: 131-136https://doi.org/10.1080/19490976.2015.1011875
        • Goldszmid R.S.
        • Trinchieri G.
        The price of immunity.
        Nat Immunol. 2012; 13: 932-938https://doi.org/10.1038/ni.2422
        • Baothman O.A.
        • Zamzami M.A.
        • Taher I.
        • Abubaker J.
        • Abu-Farha M.
        The role of Gut microbiota in the development of obesity and diabetes.
        Lipids Health Dis. 2016; 15: 108https://doi.org/10.1186/s12944-016-0278-4
        • Balducci S.
        • Zanuso S.
        • Nicolucci A.
        • Fernando F.
        • Cavallo S.
        • Cardelli P.
        • et al.
        Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss.
        Nutr Metab Cardiovasc Dis. 2010; 20: 608-617https://doi.org/10.1016/j.numecd.2009.04.015
        • Lara Fernandes J.
        • Serrano C.V.
        • Toledo F.
        • Hunziker M.F.
        • Zamperini A.
        • Teo F.H.
        • et al.
        Acute and chronic effects of exercise on inflammatory markers and B-type natriuretic peptide in patients with coronary artery disease.
        Clin Res Cardiol. 2011; 100: 77-84https://doi.org/10.1007/s00392-010-0215-x
        • Tisi P.V.
        • Hulse M.
        • Chulakadabba A.
        • Gosling P.
        • Shearman C.P.
        Exercise training for intermittent claudication: does it adversely affect biochemical markers of the exercise-induced inflammatory response?.
        Eur J Vasc Endovasc Surg. 1997; 14: 344-350https://doi.org/10.1016/S1078-5884(97)80283-3
        • Ho S.S.
        • Dhaliwal S.S.
        • Hills A.P.
        • Pal S.
        Effects of chronic exercise training on inflammatory markers in Australian overweight and obese individuals in a randomized controlled trial.
        Inflammation. 2013; 36: 625-632https://doi.org/10.1007/s10753-012-9584-9
        • Codella R.
        • Adamo M.
        • Maffi P.
        • Piemonti L.
        • Secchi A.
        • Luzi L.
        Ultra-marathon 100 km in an islet-transplanted runner.
        Acta Diabetol. 2016; : 1-4https://doi.org/10.1007/s00592-016-0938-x
        • Matsumoto M.
        • Inoue R.
        • Tsukahara T.
        • Ushida K.
        • Chiji H.
        • Matsubara N.
        • et al.
        Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum.
        Biosci Biotechnol Biochem. 2008; 72: 572-576https://doi.org/10.1271/bbb.70474
        • Campbell S.C.
        • Wisniewski P.J.
        Exercise is a novel promoter of intestinal health and microbial diversity.
        Exerc Sport Sci Rev. 2017; 45: 41-47https://doi.org/10.1249/JES.0000000000000096
        • Cook M.D.
        • Martin S.A.
        • Williams C.
        • Whitlock K.
        • Wallig M.A.
        • Pence B.D.
        • et al.
        Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis.
        Brain Behav Immun. 2013; 33: 46-56https://doi.org/10.1016/j.bbi.2013.05.005
        • Evans C.C.
        • LePard K.J.
        • Kwak J.W.
        • Stancukas M.C.
        • Laskowski S.
        • Dougherty J.
        • et al.
        Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity.
        PLoS One. 2014; 9e92193https://doi.org/10.1371/journal.pone.0092193
        • Choi J.J.
        • Eum S.Y.
        • Rampersaud E.
        • Daunert S.
        • Abreu M.T.
        • Toborek M.
        Exercise attenuates PCB-induced changes in the mouse gut microbiome.
        Environ Health Perspect. 2013; 121: 725-730https://doi.org/10.1289/ehp.1306534
        • Queipo-Ortuño M.I.
        • Seoane L.M.
        • Murri M.
        • Pardo M.
        • Gomez-Zumaquero J.M.
        • Cardona F.
        • et al.
        Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels.
        PLoS One. 2013; 8e65465https://doi.org/10.1371/journal.pone.0065465
        • Petriz B.A.
        • Castro A.P.
        • Almeida J.A.
        • Gomes C.P.
        • Fernandes G.R.
        • Kruger R.H.
        • et al.
        Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats.
        BMC Genomics. 2014; 15: 511https://doi.org/10.1186/1471-2164-15-511
        • Cook M.D.
        • Allen J.M.
        • Pence B.D.
        • Wallig M.A.
        • Gaskins H.R.
        • White B.A.
        • et al.
        Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training.
        Immunol Cell Biol. 2016; 94: 158-163https://doi.org/10.1038/icb.2015.108
        • Kang S.S.
        • Jeraldo P.R.
        • Kurti A.
        • Miller M.E.
        • Cook M.D.
        • Whitlock K.
        • et al.
        Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition.
        Mol Neurodegener. 2014; 9: 36https://doi.org/10.1186/1750-1326-9-36
        • Denou E.
        • Marcinko K.
        • Surette M.G.
        • Steinberg G.R.
        • Schertzer J.D.
        High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity.
        Am J Physiol Endocrinol Metab. 2016; 310: E982-E993https://doi.org/10.1152/ajpendo.00537.2015
        • Liu T.-W.
        • Park Y.-M.
        • Holscher H.D.
        • Padilla J.
        • Scroggins R.J.
        • Welly R.
        • et al.
        Physical activity differentially affects the cecal microbiota of ovariectomized female rats selectively bred for high and low aerobic capacity.
        PLoS One. 2015; 10e0136150https://doi.org/10.1371/journal.pone.0136150
        • Mika A.
        • Van Treuren W.
        • González A.
        • Herrera J.J.
        • Knight R.
        • Fleshner M.
        Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats.
        PLoS One. 2015; 10e0125889https://doi.org/10.1371/journal.pone.0125889
        • Mika A.
        • Fleshner M.
        Early-life exercise may promote lasting brain and metabolic health through gut bacterial metabolites.
        Immunol Cell Biol. 2016; 94: 151-157https://doi.org/10.1038/icb.2015.113
        • Cani P.D.
        • Amar J.
        • Iglesias M.A.
        • Poggi M.
        • Knauf C.
        • Bastelica D.
        • et al.
        Metabolic endotoxemia initiates obesity and insulin resistance.
        Diabetes. 2007; 56: 1761-1772https://doi.org/10.2337/db06-1491
        • Frisard M.I.
        • McMillan R.P.
        • Marchand J.
        • Wahlberg K.A.
        • Wu Y.
        • Voelker K.A.
        • et al.
        Toll-like receptor 4 modulates skeletal muscle substrate metabolism.
        Am J Physiol Endocrinol Metab. 2010; 298: E988-E998https://doi.org/10.1152/ajpendo.00307.2009
        • Peppler W.T.
        • Anderson Z.G.
        • Sutton C.D.
        • Rector R.S.
        • Wright D.C.
        Voluntary wheel running attenuates lipopolysaccharide-induced liver inflammation in mice.
        Am J Physiol Regul Integr Comp Physiol. 2016; 310: R934-R942https://doi.org/10.1152/ajpregu.00497.2015
        • Hoffman-Goetz L.
        • Pervaiz N.
        • Packer N.
        • Guan J.
        Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes.
        Brain Behav Immun. 2010; 24: 1105-1115https://doi.org/10.1016/j.bbi.2010.05.001
        • Hoffman-Goetz L.
        • Pervaiz N.
        • Guan J.
        Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-α in intestinal lymphocytes.
        Brain Behav Immun. 2009; 23: 498-506https://doi.org/10.1016/j.bbi.2009.01.015
        • Viloria M.
        • Lara-Padilla E.
        • Campos-Rodríguez R.
        • Jarillo-Luna A.
        • Reyna-Garfias H.
        • López-Sánchez P.
        • et al.
        Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine.
        Immunol Invest. 2011; 40: 640-656https://doi.org/10.3109/08820139.2011.575425
        • Cerdá B.
        • Pérez M.
        • Pérez-Santiago J.D.
        • Tornero-Aguilera J.F.
        • González-Soltero R.
        • Larrosa M.
        Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health?.
        Front Physiol. 2016; 7: 51https://doi.org/10.3389/fphys.2016.00051
        • Clarke S.F.
        • Murphy E.F.
        • O’Sullivan O.
        • Lucey A.J.
        • Humphreys M.
        • Hogan A.
        • et al.
        Exercise and associated dietary extremes impact on gut microbial diversity.
        Gut. 2014; 63: 1913-1920https://doi.org/10.1136/gutjnl-2013-306541
        • Liu W.Y.
        • Lu D.J.
        • Du X.M.
        • Sun J.Q.
        • Ge J.
        • Wang R.W.
        • et al.
        Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men—the role of gut microbiota composition: study protocol for the AELC randomized controlled trial.
        BMC Public Health. 2014; 14: 48https://doi.org/10.1186/1471-2458-14-48
        • Bressa C.
        • Bailén-Andrino M.
        • Pérez-Santiago J.
        • González-Soltero R.
        • Pérez M.
        • Montalvo-Lominchar M.G.
        • et al.
        Differences in gut microbiota profile between women with active lifestyle and sedentary women.
        PLoS One. 2017; 12e0171352https://doi.org/10.1371/journal.pone.0171352
        • Estaki M.
        • Pither J.
        • Baumeister P.
        • Little J.P.
        • Gill S.K.
        • Ghosh S.
        • et al.
        Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions.
        Microbiome. 2016; 4: 42https://doi.org/10.1186/s40168-016-0189-7
        • Yang Y.
        • Shi Y.
        • Wiklund P.
        • Tan X.
        • Wu N.
        • Zhang X.
        • et al.
        The association between cardiorespiratory fitness and gut microbiota composition in premenopausal women.
        Nutrients. 2017; 9https://doi.org/10.3390/nu9080792
        • Paulsen J.A.
        • Ptacek T.S.
        • Carter S.J.
        • Liu N.
        • Kumar R.
        • Hyndman L.K.
        • et al.
        Gut microbiota composition associated with alterations in cardiorespiratory fitness and psychosocial outcomes among breast cancer survivors.
        Support Care Cancer. 2017; 25: 1563-1570https://doi.org/10.1007/s00520-016-3568-5
        • Cox A.J.
        • Pyne D.B.
        • Saunders P.U.
        • Fricker P.A.
        Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes.
        Br J Sports Med. 2010; 44: 222-226https://doi.org/10.1136/bjsm.2007.044628
        • Gisolfi C.V.
        Is the GI system built for exercise?.
        News Physiol Sci. 2000; 15: 114-119
        • Peters H.P.
        • De Vries W.R.
        • Vanberge-Henegouwen G.P.
        • Akkermans L.M.
        Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract.
        Gut. 2001; 48: 435-439
        • Neville V.
        • Gleeson M.
        • Folland J.P.
        Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes.
        Med Sci Sports Exerc. 2008; 40: 1228-1236https://doi.org/10.1249/MSS.0b013e31816be9c3
        • Gleeson M.
        Immune function in sport and exercise.
        J Appl Physiol. 2007; 103: 693-699https://doi.org/10.1152/japplphysiol.00008.2007
        • Ehrenpreis E.D.
        • Swamy R.S.
        • Zaitman D.
        • Noth I.
        Short duration exercise increases breath hydrogen excretion after lactulose ingestion: description of a new phenomenon.
        Am J Gastroenterol. 2002; 97: 2798-2802https://doi.org/10.1111/j.1572-0241.2002.07025.x
        • van Wijck K.
        • Lenaerts K.
        • Grootjans J.
        • Wijnands K.A.P.
        • Poeze M.
        • van Loon L.J.C.
        • et al.
        Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention.
        AJP Gastrointest Liver Physiol. 2012; 303: G155-G168https://doi.org/10.1152/ajpgi.00066.2012
        • Karl J.P.
        • Margolis L.M.
        • Madslien E.H.
        • Murphy N.E.
        • Castellani J.W.
        • Gundersen Y.
        • et al.
        Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress.
        Am J Physiol Gastrointest Liver Physiol. 2017; 312: G559-G571https://doi.org/10.1152/ajpgi.00066.2017
        • Remely M.
        • Tesar I.
        • Hippe B.
        • Gnauer S.
        • Rust P.
        • Haslberger A.G.
        Gut microbiota composition correlates with changes in body fat content due to weight loss.
        Benef Microbes. 2015; 6: 431-439https://doi.org/10.3920/BM2014.0104
        • Tan X.
        • Saarinen A.
        • Mikkola T.M.
        • Tenhunen J.
        • Martinmäki S.
        • Rahikainen A.
        • et al.
        Effects of exercise and diet interventions on obesity-related sleep disorders in men: study protocol for a randomized controlled trial.
        Trials. 2013; 14: 235https://doi.org/10.1186/1745-6215-14-235
        • Hamasaki H.
        Exercise and gut microbiota: clinical implications for the feasibility of Tai Chi.
        J Integr Med. 2017; 15: 270-281https://doi.org/10.1016/S2095-4964(17)60342-X
        • Lozupone C.A.
        • Stombaugh J.I.
        • Gordon J.I.
        • Jansson J.K.
        • Knight R.
        Diversity, stability and resilience of the human gut microbiota.
        Nature. 2012; 489: 220-230https://doi.org/10.1038/nature11550
        • Ussar S.
        • Fujisaka S.
        • Kahn C.R.
        Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome.
        Mol Metab. 2016; 5: 795-803https://doi.org/10.1016/j.molmet.2016.07.004
        • de Goffau M.C.
        • Fuentes S.
        • van den Bogert B.
        • Honkanen H.
        • de Vos W.M.
        • Welling G.W.
        • et al.
        Aberrant gut microbiota composition at the onset of type 1 diabetes in young children.
        Diabetologia. 2014; 57: 1569-1577https://doi.org/10.1007/s00125-014-3274-0
        • Murri M.
        • Leiva I.
        • Gomez-Zumaquero J.M.
        • Tinahones F.J.
        • Cardona F.
        • Soriguer F.
        • et al.
        Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study.
        BMC Med. 2013; 11: 46https://doi.org/10.1186/1741-7015-11-46
        • Mejía-León M.E.
        • Petrosino J.F.
        • Ajami N.J.
        • Domínguez-Bello M.G.
        • de la Barca A.M.C.
        Fecal microbiota imbalance in Mexican children with type 1 diabetes.
        Sci Rep. 2014; 4: 3814https://doi.org/10.1038/srep03814
        • Zipris D.
        The interplay between the gut microbiota and the immune system in the mechanism of type 1 diabetes.
        Curr Opin Endocrinol Diabetes Obes. 2013; 20: 265-270https://doi.org/10.1097/MED.0b013e3283628569
        • Peng L.
        • Li Z.-R.
        • Green R.S.
        • Holzman I.R.
        • Lin J.
        Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.
        J Nutr. 2009; 139: 1619-1625https://doi.org/10.3945/jn.109.104638
        • Vaarala O.
        • Atkinson M.A.
        • Neu J.
        The “Perfect Storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity.
        Diabetes. 2008; 57: 2555-2562https://doi.org/10.2337/db08-0331
        • Anderson M.S.
        • Bluestone J a.
        The NOD mouse: a model of immune dysregulation.
        Annu Rev Immunol. 2005; 23: 447-485https://doi.org/10.1146/annurev.immunol.23.021704.115643
        • Peng J.
        • Hu Y.
        • Wong F.S.
        • Wen L.
        The gut microbiome in the NOD mouse.
        Methods Mol Biol. 2016; 1433: 169-177https://doi.org/10.1007/7651_2016_331
        • Gülden E.
        • Wong F.S.
        • Wen L.
        The gut microbiota and type 1 diabetes.
        Clin Immunol. 2015; 159: 143-153https://doi.org/10.1016/j.clim.2015.05.013
        • Codella R.
        • Lanzoni G.
        • Zoso A.
        • Caumo A.
        • Montesano A.
        • Terruzzi I.M.
        • et al.
        Moderate intensity training impact on the inflammatory status and glycemic profiles in NOD mice.
        J Diabetes Res. 2015; 2015: 737586https://doi.org/10.1155/2015/737586
        • Lambert J.E.
        • Myslicki J.P.
        • Bomhof M.R.
        • Belke D.D.
        • Shearer J.
        • Reimer R.A.
        Exercise training modifies gut microbiota in normal and diabetic mice.
        Appl Physiol Nutr Metab. 2015; 40: 749-752https://doi.org/10.1139/apnm-2014-0452
        • Qin J.
        • Li Y.
        • Cai Z.
        • Li S.
        • Zhu J.
        • Zhang F.
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012; 490: 55-60https://doi.org/10.1038/nature11450
        • Adamo M.
        • Codella R.
        • Casiraghi F.
        • Ferrulli A.
        • Macrì C.
        • Bazzigaluppi E.
        • et al.
        Active subjects with autoimmune type 1 diabetes have better metabolic profiles than sedentary controls.
        Cell Transplant. 2017; 26: 23-32https://doi.org/10.3727/096368916X693022
        • Benedini S.
        • Codella R.
        • Caumo A.
        • Marangoni F.
        • Luzi L.
        Different circulating ghrelin responses to isoglucidic snack food in healthy individuals.
        Horm Metab Res. 2011; 43: 135-140https://doi.org/10.1055/s-0030-1269900
        • Stewart C.J.
        • Nelson A.
        • Campbell M.D.
        • Walker M.
        • Stevenson E.J.
        • Shaw J.A.
        • et al.
        Gut microbiota of Type 1 diabetes patients with good glycaemic control and high physical fitness is similar to people without diabetes: an observational study.
        Diabet Med. 2017; 34: 127-134https://doi.org/10.1111/dme.13140
        • Allen J.M.
        • Berg Miller M.E.
        • Pence B.D.
        • Whitlock K.
        • Nehra V.
        • Gaskins H.R.
        • et al.
        Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice.
        J Appl Physiol. 2015; 118: 1059-1066https://doi.org/10.1152/japplphysiol.01077.2014
        • Lamoureux E.V.
        • Grandy S.A.
        • Langille M.G.I.
        Moderate exercise has limited but distinguishable effects on the mouse microbiome.
        mSystems. 2017; 2e00006–17https://doi.org/10.1128/mSystems.00006-17
        • Barton W.
        • Penney N.C.
        • Cronin O.
        • Garcia-Perez I.
        • Molloy M.G.
        • Holmes E.
        • et al.
        The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level.
        Gut. 2017; (gutjnl-2016-313627 [Epub ahead of print])https://doi.org/10.1136/gutjnl-2016-313627